БП ДЛЯ УСТРОЙСТВ НА РАДИОЛАМПАХ

Блок питания для наладки ламповых конструкций

БП ДЛЯ УСТРОЙСТВ НА РАДИОЛАМПАХ

Основная цель, которая была поставлена – сделать источник питания для макетирования и отработки ламповых конструкций. Основные минимальные требования для пректируемого блока питания, это:  – иметь по возможности компактный размер;  – анодное стабилизированное напряжение +300 Вольт 0.

2А, с задержкой анодного напряжения на 10-15 сек.;  – анодное +350 Вольт 1А (не стаб.), для экспериментов с фильтрами и стабилизаторами;  – два раздельных накала (переменка) ~6.3Вольт 3А для общих случаев;  – один стабилизированный накал постоянным током =6.3 Вольт 1А;  – доп.

выход ~220 Вольт 1А, гальванически развязанный с сетью, для экспериментов с первичными цепями импульсных БП;  – защита от перегрузки 0,2А (от кратковременного КЗ или ограничение тока в случае заряда мощных конденсаторов);  – формирование стабилизированного напряжения отрицательного смещения и его регулировка независимо по 2-м каналам.

В наличии имелся неисправный ИБП (бесперебойник), поэтому блок питания было решено собрать в его корпусе.

Принципиальная схема

Конструкция выполнена по классической схеме, анодный выпрямитель к тому же имеет ещё и отводы ~220 V, гальванически развязанного от сети (разьем X5), и выход непосредственно с конденсатора фильтра без стабилизации (+350V, разьем X4). Цепи отрицательного смещения выполнены по схеме вольтодобавки. Особенности узлов будут освещены ниже.

Рисунок 1.
Принципиальная схема лабораторного источника питания.

Стабилизатор анодного напряжения

Выполняет две задачи: сглаживает пульсации и обеспечивает плавную подачу высокого напряжения, предотвращая аварийные режимы при включении. Стабилизатор имеет защиту от перегрузки по току.
Немного подробнее о работе защиты: при указанном номинале R9 в 3 Ома, при токе более 180 мА, падение на нем составит 0.

5 Вольт и возникший ток базы через R10 начнет отпирать транзистор Q2, который, в свою очередь, соединит собой исток и затвор Q1 и будет его принудительно закрывать. Напряжение на выходе фильтра начнет соответственно понижаться со скоростью разряда выходного конденсатора C12, конденсатора опорной цепочки C5 и стекания его заряда через резистор R5.

Сам силовой транзистор Q1 полностью не закрывается, а переходит в режим стабилизации тока на уровне 0.2 А. Если превышение будет долгим, транзистор может выйти из строя от перегрева из-за чрезмерной рассеиваемой на нём мощности (70 Вт), поэтому допускать длительно короткое замыкание и работу в режиме ограничения тока – крайне нежелательно.

Защита призвана сгладить именно кратковременные переходные процессы, коммутацию, искрение.

Рисунок 2.
Принципиальная схема анодного фильтра.

Конденсатор C5 должен иметь как можно меньшую утечку, лучше всего применить высококачественный пленочный конденсатор (и ни в коем случае не бумажный! типа КБГ, МБГО и т.п.). На печатной плате предусмотрена возможность установки разных типоразмеров конденсаторов на выбор. Емкость конденсатора C5 в сочетании с сопротивлением R4 задает время нарастания напряжения на выходе:

t ~= 2…3 x (R4 x C5),

и при указанных номиналах С5=1µF и R4=4,7 МОм составляет около 10-15 секунд. Эту особенность можно использовать для организации задержки подачи анодного напряжения мощных радиоламп.

Следует помнить, что чем больше сопротивление R4 – тем выше требования к утечке и качеству самого конденсатора!

Стабилитроны ZD3-ZD7 набраны из нескольких последовательно включенных стабилитронов так, чтобы в сумме было получено нужное выходное напряжение.

В случае требуемого выходного напряжения 300 Вольт суммарное напряжения на стабилитронах должно составлять 305 Вольт, для этого потребуется 4 стабилитрона на 68 Вольт и один на 33 Вольт, включенные последовательно. Ток через стабилитроны ZD3-ZD7 задается сопротивлением R4 и крайне мал.

Можно вообще отказаться от них (не устанавливать), в таком случае стабилизатор перейдет в режим “электронного дросселя” и будет просто сглаживать пульсации, но напряжение на выходе будет зависеть от нагрузки (в довольно больших пределах).

Фактически, в таком режиме напряжение на выходе схемы будет примерно соответствовать минимальному пику пульсаций напряжения на входе. Это предпочтительнее в сильноточном (более 300 мА) режиме, потому что нагрев транзистора Q1 будет заметно меньшим; иначе, возможно, придется позаботиться о более эффективном радиаторе для Q1. В любом случае, лучше всего отрегулировать защиту по максимально допустимому для конкретного стабилизатора тепловому режиму и выходному току, соответственно пересчитав номинал R9.

Стабилизатор накала

Выполнен на линейном интегральном стабилизаторе. На выходе выпрямителя в идеале имеем всего около 7.7 вольт, поэтому были выбраны выпрямительные диоды 1N5821 с минимальным прямым падением на номинальном токе (0.

50V-3A) и применен стабилизатор типа LT1084IT-ADJ (можно ставить и 1083 и 1085, так-же LM1084IT-ADJ, 1085, 1086), с минимальной разницей между входом и выходом порядка 1 Вольт на токе 1А. Нужное выходное напряжение задается делителем R8, R7, R6 и RP1 в цепи ADJ микросхемы LT1084.

Подстроечный резистор RP1 позволяет более точно задать требуемое напряжение на выходе.

Рисунок 3.
Принципиальная схема стабилизатора накала.

Емкость C6 набрана из двенадцати конденсаторов 1000µF x 10V.

Если позволяет высота – можно набрать C6 из более высоких 2200µF x 10V, что уменьшит пульсации и увеличит максимальный допустимый выходной ток накального стабилизатора до 2 Ампер (LM1086 здесь тогда не подойдёт).

В любом случае, если есть возможность домотать несколько витков на накальный трансформатор, имеет смысл увеличить переменное напряжение на входе с 6.3 до 7,5…7,7 Вольт, что даст запас по нагрузочной способности.

Блок отрицательного смещения

Рисунок 4.
Принципиальная схема блока отрицательного смещения.

У применяемого в БП трансформатора, нет “лишней” обмотки для напряжения смещения отрицательной полярности, поэтому пришлось использовать метод “вольтодобавки” на однополупериодном выпрямителе VD4 C3, обеспечив развязку конденсатором C1. Полученное напряжение стабилизируется стабилизатором на R2, C4, ZD1-ZD2.

Ток, потребляемый узлами исследуемого аппарата от подобного источника смещения, обычно очень мал, поэтому ток для стабилизатора задан около 3 мА – чтобы исключить ненужный нагрев и стабилитронов ZD1, ZD2 и гасящего резистора R2.

C выхода стабилизатора, напряжение подается на потенциометры RP2 и RP3, которыми задается нужное напряжение смещения в исследуемых схемах. Ток, текущий через потенциометры, составляет около 2,8 мА и его тоже нужно учитывать в расчете балластного сопротивления R2 и требуемого тока через стабилитроны.

Так, как такой выпрямитель может оказывать влияние на выходное напряжение анодного выпрямителя без подключенной нагрузки, в схему был установлен нагрузочный резистор R load,составленный из пяти последовательно соединённых резисторов 4,7 кОм 2 вт.

Конечно, лучше будет использовать отдельную обмотку для напряжения смещения, а можно поставить дополнительный маломощный трансформатор, даже вольт на 24-36, и сделать выпрямитель с удвоением.

Рисунок 5.
Принципиальная схема блока регуляторов отрицательного смещения.

Так как будущий корпус весьма компактен, пришлось принять меры для того, чтобы “вписать” все узлы в существующий конструктив и при этом обеспечить нужный режим охлаждения.

Для этого, например, как было сказано выше, емкость C5 представляет собой 12 включенных параллельно конденсаторов 1000µF x 10V (D=10mm, h=12mm), чтобы получился “плоский” конденсатор на 12.000µF x 10V.

В качестве радиаторов для Q1 и IC1 использованы отрезки уголка 40х20х2мм длиной 58мм. Площадь рассеяния радиаторов составляет примерно 50кв.

см, что позволяет рассеять на них по 10W тепла, что для IC1 более чем достаточно, а для Q1 потребуется уточнить при эксплуатации. Для придания необходимой жесткости, плата по длинной стороне усиливается дюралевым уголком 10х10х1мм, являющимся также и верхней частью каркаса корпуса.

Рисунок 6.
Монтажный чертеж.

 

Рисунок 7.
Вид на плату со стороны деталей.

 

Рисунок 8.
Вид на плату со стороны пайки.

Конструкция

Корпус

Корпусом будущей конструкции послужил добротный металлический корпус отслужившего своё блока бесперебойного питания APS BackUPS BK500, одна из первых модификаций, без светодиодов на передней панели, ориентировочно 2003 года выпуска (впоследствии в “квадратик” в верхней части передней панели был врезан стрелочный индикатор, на фото его нет).

Рисунок 9.
Вид получившегося шасси без каркаса.

Внутренности полностью удалены; так как печатная плата представляла собой часть конструкции, то с помощью двух уголков восстановлена рама и жесткость корпуса.

  Вместо аккумулятора прекрасно встал анодный  трансформатор ТА262-127/220-50 (он же используется как трансформатор гальванической развязки).

Накальный трансформатор ТН44-127/220-50 размещен на штатном месте, все элементы выпрямителей и стабилизаторы смонтированы на образовавшемся “шасси” из уголков.

Рисунок 10.
Вид на заднюю панель с клеммами нагрузок.

Шесть пар выходных винтовых клемм: ~220V, =350, =300Vстаб,~6.3V/3A, ~6.3V/3A и =6.35V/1A смонтированы на стеклотекстолитовой планке, установленной вместо счетверенного гнезда выходных клемм UPS типа IEC320.

Два резистора регулировки напряжения смещения установлены слева вверху, клеммы подключения цепи отрицательного смещения – ниже, между предохранителем и сетевым разъемом. Оригинальный механический предохранитель на 4.

5А сохранен.

Плата стабилизаторов

Плата стабилизаторов выполнена в виде единого модуля – части конструктива рамы корпуса. Два радиатора заполняют свободные щели вокруг силового анодного трансформатора.

Балластное сопротивление R4 (четыре резистора 47кОм на 1 W каждый, включенные параллельно-последовательно) пока ещё не смонтированы. Отверстия в плате необходимы для отвода тепла от них.

Все подключения к плате выполняются через клеммные колодки.

Рисунок 11.
Плата стабилизаторов в сборе.

Рисунок 12.
Устройство в сборе со снятым кожухом.

Общие замечания о конструкции и технологии

Общий вид собранного устройства.  Монтаж, как видно, выполнен очень компактно, свободного места осталось совсем немного. Провода уложены в жгуты с разделением на три категории:  – жгуты с силовыми проводами первичной цепи,  – жгуты с высоковольтными проводами вторичных цепей,

 – жгуты с низковольтными проводами цепей накалов.

Все цепи выполнены проводом, сечением 0.5 или 0.75 кв.мм, кроме цепей накала, где применены жилы сечением около 2.2 кв.мм.
Печатная плата покрыта лаком.

Покрытие платы лаком желательно, так как в плате имеется высокое напряжение, кроме того, в электронном фильтре есть высокоомные участки, где утечки по монтажу через влагу или загрязнения недопустимы, так как неизбежно приведут к нарушению нормального режима работы всего электронного фильтра.

В крайнем случае, плату можно покрыть тонким слоем нейтральной канифоли, хотя это не лучший выбор, так как канифоль гигроскопична.

Рисунок 13.
Общий вид собранного устройства.

 

Vadim Limar

Скачать архив с печатной платой;

Архив

Источник; https://sites.google.com/a/lvsystem.ru/lab/praktika/istocniki-pitania/tubepowersuply

Источник: http://r-rl.ru/news/blok_pitanija_dlja_naladki_lampovykh_konstrukcij/2015-04-30-21

Бп для устройств на радиолампах

БП ДЛЯ УСТРОЙСТВ НА РАДИОЛАМПАХ

Одна из самых сложных и важных частей любой ламповой конструкции – это источник питания. И лучше (удобнее) всего сделать его на отдельной плате. На ней будут расположены модули: система отложенного старта, включения усилителя, выпрямитель напряжения накалов, охлаждения и стабилизатор анодного напряжения.

Схема блока питания для ламповых устройств

Номиналы радиоэлементов, а также полное и оригинальное описание статьи – смотрите в PDF файле. Для питания накалов радиоламп используем напряжение 6,3 V постоянного и переменного тока.

 Лампы высокой мощности подогреваются переменным напряжением, в то время как лампы предусилителя – постоянным, с отдельного блока питания.

 Вот пример усилителя звука к наушникам, для которого и проектировалась эта схема:

Схема УНЧ на радиолампах для наушников

Анодное напряжение выпрямляется и сглаживается с помощью CRC фильтра и электронного фильтра, построенного на транзисторе T1.

Коммутация сетевого напряжения переменного тока 230 В выполнена с помощью простой системы, состоящей из небольшого, 2-ваттного трансформатора на 12 В, реле, и нескольких RC элементов, которые и включают основной источник питания – главный трансформатор Tr2.

 Как видно по схеме, выключателем W2, который находится на передней панели корпуса усилителя, включаем питание катушки реле Pk1, которое, в свою очередь, включает в сеть основной трансформатор питания – TR2.

Второй модуль – это выпрямитель напряжения накаливания, которым питаются лампы предусилителя. Одновременно выпрямленное напряжение используется для питания охлаждающего вентилятора.

Третий модуль построен на полевом транзисторе T2 и реле Pk2. Это блок задержки включения напряжения питания ламп усилителя. Это позволяет произвести включение напряжения на анодах только тогда, когда лампы достаточно нагрелись, что положительно влияет на их долговечность.

Принцип задержки очень прост: через резистор R106 больших значений (600-800k) заряжается конденсатор C110. По мере заряда транзистор T2 начинает открываться и реле Pk2 срабатывает, подключая напряжение с вторичной обмотки трансформатора Tr2, которое после стабилизации питает аноды ламп.

Диод Dg гасит импульс самоиндукции появляющийся на катушке реле. Светодиоды DL1 и DL2 сигнализируют о работе системы, светодиод DL1 гаснет после включения реле.

Конечно задержка включения анодного питания может быть реализована самым простым из возможных способов – с помощью ручного включения дополнительным переключателем, расположенным в анодной высоковольтной цепи трансформатора TR2, но так удобнее и не надо постоянно помнить об этом.

Так как ламповый усилитель производит много тепла – накал ламп, резисторы в катодах большой мощности, блок питания – всё это греется не слабо.

И в довольно тесном корпусе циркуляция воздуха оставляет желать лучшего, несмотря на множество вентиляционных отверстий, то внутрь корпуса вставили вентилятор компьютерный, который значительно улучшил ситуацию.

Чтобы вентилятор не шумел слишком громко, он питается пониженным напряжением около 8 В, что снижает шум и (к сожалению) эффективность охлаждения.

Постоянное напряжение 6,3 V используется для питания ламп накаливания предусилителя, что уменьшает проникновение помех от нити накала к катоду. Хотя можно спокойно радиолампы питать напряжением переменного тока, но если уж есть в наличии постоянное напряжение 6,3 V, то стоит его использовать.

Как мы помним, синусоидальное напряжение после выпрямления поднимается заметно. Примерно до 7.2 V постоянного напряжения. Это напряжение слишком высокое для ламп накаливания, так что снизим его с помощью диода.

Если наоборот нехватка вольтажа – используем в выпрямителе диоды Шоттки, которые имеют меньшее падение напряжения в направлении проводимости (0,3-0,4 В), чем у выпрямительных кремниевых диодов (0,6-0,7 V).

Напряжение +/-6.3 V, используемые для накалов ламп предусилителя, симметрировано относительно массы с помощью резисторов R109, R110. Резисторы расположены непосредственно возле ламп.

Выходные мощные радиолампы подогреваются напряжением переменного тока 6,3 V, которые соединены на массу через резисторы R111, R112. Это приводит к тому, что искажения, произведенные протекающими токами в нити накала компенсируют друг друга. Эти резисторы также находятся на печатной плате возле ламп.

Сетевой трансформатор тороидальный, с экраном, который уменьшает поле рассеяния вокруг трансформатора, и замотан пластиковой лентой, что придает жесткость катушке и уменьшает дребезжание. Экран имеет вывод, который присоединился к массе. Силовой трансформатор TR2 имеет мощность 100VA, а вторичные обмотки 6,3 V/4 A и 150 V/0,5 A.

В общем на базе этой схемы можно собрать универсальный отдельный БП, от которого питать практически любую конструкцию на радиолампах. И в первую очередь, конечно же, усилитель звука.

   Форум по блокам питания

   Обсудить статью Бп для устройств на радиолампах

Источник: https://radioskot.ru/publ/bp/bp_dlja_ustrojstv_na_radiolampakh/7-1-0-1249

Немного о блоках питания усилителей (часть I)

БП ДЛЯ УСТРОЙСТВ НА РАДИОЛАМПАХ

Казалось бы что может быть проще, подключить усилитель к блоку питания, и можно наслаждаться любимой музыкой?

Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

Стабилизатор или фильтр?

Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания.

Причина этого заключается в том, что дешевле и проще спроектировать усилитель,  который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор.

Сегодня уровень подавления пульсаций типового усилителя составляет порядка  60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения.

Использование в усилительных каскадах источников постоянного тока,  дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц :(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в  1,4 раза.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов.

Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор.

Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Параллельный или последовательный стабилизатор ?

Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.

Автор использует стабилитроны для питания операционных усилителей. При этом можно организовать индикацию напряжения питания практически без дополнительных затрат (светодиодам не нужны гасящие резисторы):

Защитные резисторы

Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и… денег. Между тем, дешёвый резистор может спасти ваш усилитель!

Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

На фото показан усилитель, где монтажник перепутал транзисторы  TIP3055  с TIP2955.

Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

Главное — падение напряжения

При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода :

В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли.

В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях.

Поэтому влияние проводников тут может быть весьма существенным.

Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

0.036 Ом в отличие от 0.

0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше.

Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

Импульсы заряда

Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель.

Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя.

цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

Увеличение по клику

На рисунке показан вариант печатной платы:

Увеличение по клику

Автору до сих пор попадаются усилители, у которых высокий уровень фона вызван неправильной разводкой земли и подключением дорожек от разных «потребителей» к выходам выпрямителя.

Пульсации

Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:

При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

Продолжение следует…

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Джек Розман

Вольный перевод: Главного редактора «РадиоГазеты»

Источник: https://radiopages.ru/blok_pitaniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.