Что такое потенциал в электричестве?

Содержание

Электрический потенциал

Что такое потенциал в электричестве?

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности.

До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году.

Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы.

Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие.

Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы.

К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны… стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее.

Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр.

Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека.

К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов.

В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле.

К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов.

Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества.

Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами.

Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль.

В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты.

При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным.

Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль.

Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное.

Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения.

Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками.

Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления.

Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности.

Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности.

Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление.

Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!).

Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.

Система TN-C-S

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Источник: https://VashTehnik.ru/enciklopediya/elektricheskij-potencial.html

Электрический ток, напряжение — поймет даже ребенок!

Что такое потенциал в электричестве?

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Источник: http://popayaem.ru/elektricheskij-tok-napryazhenie.html

Коробка уравнивания потенциалов

Что такое потенциал в электричестве?

> Теория > Коробка уравнивания потенциалов

Для того чтобы понять, как осуществляется выравнивание потенциалов, надо разобраться с понятием потенциалы и разницы между ними.

Схема подключения уравнивания потенциалов

Что такое электрический потенциал и разница потенциалов

Для наглядности можно рассмотреть доходчиво на простом примере две металлических монеты, которые нагреть до разных температур:

ΔТ = 100 – 70 = 30  ̊С – разница температур будет в 30 градусов.

Если соединить монеты, тепло начнет перемещаться: более нагретая – будет отдавать тепло и остывать, менее нагретая – принимает тепло, разогревается больше. Таким образом, происходит теплообмен до выравнивания температуры на двух монетах.

В нашем случае рассматривается электрический потенциал, монеты или другие предметы можно зарядить электрическим зарядом, в этом случае будет перемещаться не тепло, а заряженные частицы от большего заряда к меньшему заряду, произойдет выравнивание потенциалов до сбалансированного состояния зарядов. Таким образом, временно возникает электрический ток.

В международной системе измерения СИ электрический потенциал измеряют как работу электрического поля по перемещению положительного заряда из определенной точки магнитного поля на бесконечно удаленное расстояние.

Величина потенциала измеряется вольтами:

1В = 1Дж/1Кл, где:

  • Дж – энергия магнитного поля, измеряется в Джоулях;
  • Кл – величина заряда, измеряется в Кулонах;

Разница между потенциалами двух зарядов, как в случае с нагревом монет, будет:

ΔВ = 100В – 70В = 30В.

Разность потенциалов уравнение

Разницу потенциалов в электрических цепях между двумя токопроводящими поверхностями, чаще всего это бывают провода, корпуса электроустановок, водопроводные тубы, шины заземления, называют напряжением и обозначают буквой «U».

Не вдаваясь в подробности физических процессов, принимается за аксиому, что в промышленных электрических цепях за объект с абсолютно нулевым потенциалом принимается земля. Поэтому напряжение в цепи измеряется относительно заземляющего контура.

Разность потенциалов в сети и угроза для людей

Распределительная коробка

На рабочих местах в офисах, на производственных линиях большое количество электрооборудования. Оно имеет металлические корпуса для экранирования элементов схем от побочных электромагнитных наводок, которые отрицательно влияют на работу оборудования.

Заводские станки на производстве по причине производственных условий имеют прочные металлические корпуса и много другого оборудования внутри. Все корпуса обязательно заземляются на общий контур заземления.

Промежуточным элементом между общей шиной заземления и элементами, подлежащими заземлению, может быть шина уравнивания потенциалов.

Одним из вариантов, который активно применяется потребителями, считается шина дополнительного уравнивания потенциалов шдуп. Коробки серии шдуп у4 имеют эстетичный вид и удачно вписываются в интерьер.

При замыкании токоведущих частей в приборе на корпус через него начинает проходить ток. Это может произойти при механических повреждениях, деформации металлических листов корпуса или смещения отдельных элементов внутри прибора. Иногда перетирается изоляция проводов, и возникает утечка тока на корпус или короткое замыкание.

Когда контакты заземления надежны, сработает защита, или отдельные элементы прибора выйдут из строя, линия будет обесточена. В этих случаях угроза поражения электрическим током исключается.

Возникающие токи через корпус будут уходить на заземляющий контур, при нарушении заземления, ненадежных контактах на шинах или корпусах, обрывах заземляющих проводников возникает угроза для работающего персонала.

Если коснуться неисправного прибора без заземления, токи на корпусе начинают протекать через человеческое тело.

Особенно опасна ситуация, когда прикосновения происходят в двух точках: незаземленного прибора и любого заземленного элемента интерьера, металлического пола, соседнего прибора, батареи, шины заземления или другого объекта. В этом случае тело человека исполняет роль нагрузки, через которую протекает ток на землю.

Пример поражения током в левой части и защита, когда произведено выравнивание потенциалов, в правой части

Напряжение (разность потенциалов) при коротком замыкании фазы на корпус будет равно 220В. При повреждении изоляции проводов оно может быть меньше, это зависит от того, насколько изоляция сохранила свои диэлектрические свойства. Переменное напряжение выше 42В уже может представлять угрозу для человеческой жизни.

Места прикосновений имеют большое значение, некоторые варианты, когда маршрут протекания тока идет через сердце, считаются наиболее опасными, могут привести к смертельному исходу:

  • Через грудь и руки;
  • Через руки в ноги;
  • Особенно опасен маршрут через левую руку, сердце и правую или левую ногу.

В бытовых условиях частного дома или квартиры опасность от разности потенциалов возникает в помещениях с повышенной влажностью. В ванной комнате и на кухне сосредоточено большое количество электрической бытовой техники:

  • Стиральные машины;
  • Микроволновая печь;
  • Холодильник;
  • Нагревающий котел и другая техника.

Большую опасность представляют электрические приборы, находящиеся рядом с трубами водоснабжения или отопления, совмещающие функции электрического оборудования с циркуляцией воды. Вода является хорошим проводником электрического тока, при плохом заземлении стиральная машина, струя из крана, раковина или ванна могут бить током.

Вариант схемы подключения объектов к шине выравнивания потенциалов

Важным моментом является то, что заземление электрических цепей металлических конструкций, канализации, водоснабжения, отопления имеет отдельные несвязанные контура. Даже если все они уходят в землю, то имеют различные сопротивления заземления.

Когда не установлена дополнительная система уравнивания потенциалов между фазой, контуром заземления, системами отопления и водоснабжения, будет разное напряжение. Это создает между ними разность потенциалов, при утечке тока с фазы на любую из коммуникаций.

Напряжение можно замерить обычным мультиметром в режиме измерения переменного напряжения на пределе 200 или 750 В.

Например:

  • Между фазой и отоплением – 180 В;
  • Фаза – водоснабжение – 120В.

При таком раскладе при неисправной стиральной машине без заземления при соприкосновении с корпусом и металлической водопроводной трубой через тело пройдет переменный ток напряжением 120В. Даже между водопроводом и контуром отопительной системы будет:

U (отопление – водопровод) = 180В – 120В = 60В, это вполне достаточно чтобы травмировать человека током при прикосновении к этим коммуникациям одновременно.

В современных условиях металлические трубы в многоквартирных домах меняют на пластиковые отдельными участками. Самая плохая ситуация, когда соседи сверху и снизу заменили, а на промежуточном этаже остались металлические конструкции, они никак не замкнуты на землю. В этом случае напряжение:

  • Фаза – водоснабжения может быть еще меньше 20-30В, казалось бы, хорошо, это не смертельно;
  • Но при утечке разница потенциалов отопление – водоснабжения будет еще больше 180В-30В = 150В.

К сведению. Для того чтобы дополнительная система уравнивания потенциалов была эффективна, в электрических сетях на различных объектах используется коробка уравнивания потенциалов.

Конструкция и подключение коробки уравнивания потенциалов (КУП)

Что такое уравнивание потенциалов? По своей сути, коробка для выравнивания потенциалов (КУП) представляет собой обычное коммутационное устройство: в пластиковом корпусе крепится латунная шина с отверстиями под болтовое крепление проводников. Выравнивание потенциалов конструкцией различных коммуникаций осуществляется подключением их к единому контуру заземления, который работает как уравнитель электрических потенциалов.

Внешний вид коробки модели шдуп у4

КУП рекомендуется устанавливать в ванной комнате, на кухне, где проходят стояки различных сантехнических коммуникаций, при этом обеспечивается беспрепятственный доступ к ней.

Дополнительная система выравнивания потенциалов ДСУП имеет несколько вариантов коробок, одна из наиболее эффективно используемых – куп2603. Они очень удобны, в моделях куп2603 и куп куп2603 1 хорошо сочетается цена и качество, поэтому они так популярны у потенциальных покупателей. Удачный вариант для различных вариантов ДСУП.

Пример подключения труб к шине КУП

На шину коробки в ДСУП подключается вся доступная к прикосновению в помещении бытовая электротехника.

Обратите внимание! Система уравнивания потенциалов по ПУЭ (правила устройства электроустановки) издание №7 п. 7.1.88 требует в ванной комнате все токопроводящие конструкции различных коммуникаций, выходящих за пределы помещения, подключать на шину КУП. Над нагревательными элементами пола, залитыми в бетон, закладывается металлическая сетка, которая также подключается к КУП.

Примерный перечень подключаемых элементов:

  • Шина РЕ заземления в РЩ как элемент заземляющего контура;
  • Металлическая труба водоотвода (канализация);
  • Трубы водопровода холодного и горячего стояков;
  • Все отводы заземления бытового электрооборудования;
  • Трубы отопительной системы;
  • Металлический корпус ванной и раковины.

Пример подключения ванны к шине КУП

Все соединения ДСУП рекомендуется осуществлять проводом ПВ 1х4 с ПВХ изоляцией желто-зеленого цвета.

После выравнивания потенциалов с помощью ДСУП напряжения между конструкциями различных коммуникаций не будет, следовательно, при прикосновении к ним нет оснований опасаться ударов электрическим током.

Источник: https://jelectro.ru/teoriya/korobka-uravnivaniya-potencialov.html

Что такое потенциал в электричестве

Что такое потенциал в электричестве?

В физике часто используется понятие потенциалов. Каждый, кто работает с электроникой или домашними электрическими сетями, должен представлять себе, потенциал что такое, как проводится его измерение, и какое влияние он оказывает на окружающие тела.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы.

Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле.

В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал.

В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала.

Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет.

Разность потенциалов (напряжение)

Напряжение является одним из важнейших терминов в электрике, оно описывается как работа, совершаемая электрополем с целью перемещения некоторого заряда из одной точки в другую.

По аналогии с гравитацией, заряд при помещении в зону действия поля обладает потенциалом, который можно сравнить с соответствующим видом энергии у тела.

Величина электрического потенциала прямо пропорциональна степени полевой напряженности и величине самого заряда.

Что такое фаза в электричестве Встает вопрос: потенциал в чем измеряется? Правильнее будет сказать, в чем обычно измеряется разность потенциалов, так как работники электротехники имеют дело именно с этой величиной в форме напряжения.

Для самого потенциала специальной измерительной единицы не существует. В СИ принято измерять разность в вольтах (В).

Она равна одному вольту в том случае, если для транспортировки заряда в один кулон из одной точки электрополя в другую потребуется совершить работу в один джоуль.

Важно! Измерить напряжение можно с помощью специального устройства – вольтметра.

Стрелочная разновидность прибора, использующаяся на школьных уроках физики, оснащена градуированной шкалой, базирующейся на угле отклонения проволочной рамки, по которой проходит электроток.

Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь. Для измерения важно правильно подключить щупы.

Измерить напряжение поможет вольтметр

Примеры формул для вычисления напряжения

Электрическое поле — что это такое, понятие в физике

Измерить напряжение можно, воспользовавшись такой формулой:

U=A/q (U, A и q – величина напряжения, переносящая работа электрополя и заряд, соответственно).

Выразив работу (A=q*U), можно понять, что, чем больше напряженность, тем большую работу потребуется совершить электрополю, чтобы перенести Q. Такие преобразования помогают усвоить, почему важно, чтобы источник питания был мощным. Чем больше потенциальная разница между его клеммами, тем больший объем работы он способен обеспечивать.

Чтобы определить напряжение на участке электрической цепи, используется следующее выражение:

U=I*R.

Здесь I – сила протекающего по проводнику электротока, R – сопротивление фрагмента цепи. Для последовательно и параллельно соединенных проводниковых элементов также существуют свои законы, согласно которым рассчитываются напряжение, токовая сила и сопротивление для каждой из веток.

Для чего нужен потенциометр электрику

Что такое измерение сопротивления изоляции и почему это важно

Данный прибор широко применяется в практике для модуляции напряжения.

Дело в том, что у многих источников (особенно заточенных под автономное функционирование: аккумуляторные элементы, солнечные батареи и т.д.) константное напряжение, не поддающееся управлению без специальных устройств, что может вызвать проблемы.

Чтобы уменьшить исходное напряжение такого элемента, используют устройства-делители, снабженные потенциометрами.

Как работает потенциометр? Он представляет собой резистор, имеющий пару выводов и подвижный ползунок с еще одним выводом. Подключаться такое переменное устройство сопротивления может двумя способами:

  1. По типу реостата, с использованием ползункового вывода и одного из пары других. Сопротивление замеряется движением ползунка по корпусу резистора. Регуляция цепного электротока в таком случае возможна при последовательном подключении такого реостата и источника напряжения.
  2. Потенциометрическим методом, задействующим каждый вывод из имеющейся у прибора тройки. Два главных вывода включаются параллельно источнику, снятие сниженного напряжения реализуется с ползункового механизма и одного вывода. В этом случае через резисторное устройство течет электроток, создающий спад напряжения между ползунком и боковыми выводами. В такой модели на источник питания ложится большая нагрузка, так как для точности регуляции и отсутствия сбоев необходимо, чтобы резисторное сопротивление в несколько раз уступало нагрузочному.

Потенциометрическое подключение прибора

Таким образом, понятие потенциала используется в разных областях физики: как в механике, так и в изучении электричества. В последнем случае оно выступает в качестве характеристики поля. Непосредственно рассматриваемая величина измерению не поддается, зато можно измерить разность, тогда один заряд берется за точку отсчета.

Источник: https://amperof.ru/teoriya/potencial-v-elektrichestve.html

III. Основы электродинамики

Что такое потенциал в электричестве?

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система “заряд – электростатическое поле” или “заряд – заряд” обладает потенциальной энергией, подобно тому, как система “гравитационное поле – тело” обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал – это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело – наоборот.

Потенциальная энергия поля – это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) – поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ – точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком “минус”. Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак “+”, работа имеет знак “-“.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.

Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Энергия взаимодействия n зарядов

Источник: http://fizmat.by/kursy/jelektrichestvo/potencial

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.