НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Содержание

Типы современных литиевых аккумуляторных батарей

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Когда говорят о литиевых батарейках или аккумуляторах, то чаще всего даже не догадываются, что их в последние пару лет появилось чуть ли не десяток разновидностей, каждая из которых представляет из себя литий с различными добавками других химических элементов, в итоге существенно отличающихся друг от друга.

Давайте разберёмся в их типах и начнём с классики:

Li-ion батареи

Литий-ионные аккумуляторы – это классические перезаряжаемые аккумуляторов, в которой ионы лития перемещаются от отрицательного электрода к положительному электроду во время разряда и обратно при зарядке.

Литий-ионные АКБ широко распространены в бытовой электронике.

Они являются одним из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших энергетической плотностью, отсутствие эффекта памяти и медленной потери заряда, когда он не используется (низкий саморазряд).

Эта серия охватывает цилиндрические и призматические типоразмеры аккумуляторов. Li-ion имеет наивысшую плотность мощности среди любого аккумулятора старого типа. Очень легкий вес и большой цикл жизни делает его идеальным продуктом для многих решений.

LTO батареи

Литий-титанат (титанат лития) – это относительно новый класс литий-ионных АКБ – (подробнее читайте тут). Он характеризуется очень длинным жизненным циклом, который измеряется в тысячах циклов.

Литий-титанат свинца является также очень безопасным и сравним в этом плане с фосфатом железа. Энергетическая плотность ниже, чем у других литий-ионных источников тока и его номинальное напряжение 2.4 В.

Эта технология отличается очень быстрой зарядкой, низким внутренним сопротивлением, очень высоким жизненным циклом и отличной выносливостью (также безопасностью). LTO нашел свое применение в основном в электромобилях и наручных часах.

В последнее время она начинает находить применение в мобильных медицинских устройствах, благодаря своей высокой безопасности. Одна из особенностей технологии заключается в том, что используются нанокристаллы на аноде вместо углерода, что обеспечивает гораздо более эффективную площадь поверхности.

К сожалению, эта батарея имеет более низкие напряжения, чем другие типы литиевых АКБ.

Особенности:

  • Удельная энергия: около 30-110Wh/кг
  • Плотность энергии: 177 Вт * ч/л
  • Удельная мощность: 3,000-5,100 Вт/кг
  • Разряд КПД: примерно 85%; зарядки эффективность более 95%
  • Энергия-цена: 0.5 Вт/доллар
  • Срок годности: >10 лет
  • Саморазряд: 2-5 %/месяц
  • Долговечность: 6000 циклов до 90% емкости
  • Номинальное напряжение: от 1,9 до 2,4 В
  • Температура: от -40 до +55°C
  • Метод зарядки: используется стабильный постоянный ток, затем постоянное напряжение до тех пор, пока не достигнет порога.

Химическая формула: Li4Ti5O12 + 6LiCoO2 < > Li7Ti5O12 + 6Li0.5CoO2 (Е=2,1 В)

Li-Polymer батареи

Литий-полимер имеет бОльшую плотность энергии в плане веса, чем литий-ионные АКБ. В очень тонких ячейках (до 5 мм) литий-полимер обеспечивает высокую объемную плотность энергии. Великолепная стабильность в перенапряжениях и высоких температурах.

Эта серия аккумуляторов может производиться в диапазоне от 30 до 23000 мА/ч, корпуса призматического и цилиндрического типов.

Литий-полимерные аккумуляторы имеют ряд преимуществ: большую плотность энергии по объему, гибкость в размерах ячеек и более широкий запас прочности, с превосходной стабильностью напряжения даже на высокой температуре.

Основные области применения: портативные плееры, Bluetooth, беспроводные устройства, КПК и цифровые камеры, электрические велосипеды, GPS навигаторы, ноутбуки, электронные книги.

Особенности:

  • Номинальное напряжение: 3,7 В
  • Зарядное напряжение: 4,2±0,05 В
  • Ток заряда, скорость: 0.2-10С
  • Предельное напряжение разряда: 2.5 В
  • Скорость разряда: до 50С
  • Выносливость в циклах: 400 циклов

LiFePO4 батареи

Литий-фосфат железа имеет хорошие характеристики безопасности, длительный срок службы (до 2000 циклов), и невысокую стоимость производства. LiFePO4 батареи хорошо подходят для высоких токов разрядки, например военной техники, электроинструментов, электровелосипедов, мобильных компьютеров, ИБП и солнечных энергетических систем.

В качестве нового анодного материала для литий-ионных аккумуляторов, lifepo4 был впервые представлен в 1997 году и постоянно совершенствуется до настоящего времени.

Он привлек внимание экспертов благодаря его надежной безопасности, долговечности, низкого воздействия на окружающую среду при утилизации, и удобных зарядно-разрядных характеристик.

 Многие специалисты утверждают, что lifepo4 аккумуляторы являются на сегодняшний день лучшим вариантом для автономного питания электроники.

Li-SO2 батареи

Литий диоксид серы (батарея Li и SO2) – эти батареи имеют высокую плотность энергии и хорошую устойчивость к разряду на высокой мощности. Такие элементы используются в основном в военке, метеорологии и космонавтике.

Аккумуляторы на базе литий диоксида серы с металлическим литиевым анодом (самый легкий из всех металлов) и жидким катодом, содержащим пористый углеродный токосъемник с наполнением диоксида серы (SO2) выдают напряжение 2.9 В и имеют цилиндрическую форму.

Особенности:

  • Высокое рабочее напряжение, стабильное на протяжении большей части разряда
  • Чрезвычайно низкий саморазряд
  • Работоспособность в экстремальных условиях 
  • Широкий рабочий температурный диапазон (-55°C до +65°С)

Li-MnO2 батареи

Литий-диоксид марганца (батарея Li-MnO2) – такие аккумуляторы обладают легким металлическим литиевым анодом и твердым катодом из диоксида марганца, погруженный в неагрессивный, нетоксичный органический электролит. Этот тип батареи соответствуют RoHS ЕС и характеризуется большой емкостью, высокой допустимой разрядкой и длинной продолжительностью службы.

Li-MnO2 широко используется в резервных источниках питания, аварийных радиобуях, пожарных сигнализациях, электронных системах контроля доступа, цифровых фотоаппаратах, медицинском оборудовании. 

Особенности:

  • Высокая плотность энергии
  • Очень стабильное напряжение разрядки
  • Более чем 10-ти летний срок хранения
  • Рабочая температура: -40 до +60°С

Li-SOCL2 батареи

Хлорида тионил лития (литий-SOCl2) батареи обладают легким металлическим литиевым анодом и жидким катодом, содержащий пористый углеродный токосъемник наполненный тионилхлоридом (SOCl2). Батарея Li-SOCL2 идеально подходят для автомобильных устройств, медицинской техники, а также военных и аэрокосмических устройств. Они имеют самый широкий диапазон рабочих температур от -60 до + 150°С.

Особенности:

  • Высокая плотность энергии
  • Долгий срок годности при хранении
  • Широкий температурный диапазон
  • Хорошая герметизация
  • Стабильное разрядное напряжение

Li-FeS2 батареи

Аккумуляторы и батареи Li-FeS2 расшифровываются как литий-железодисульфидные. Информация про них будет добавлена позже.

   Справочники радиодеталей

Источник: https://elwo.ru/publ/spravochniki/tipy_sovremennykh_litievykh_akkumuljatornykh_batarej/2-1-0-915

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Литий-ионные батареи — один из самых популярных современных видов аккумуляторов. Их широко используют не только в портативной электронике, но и автомобилях. Но и эти источники питания не лишены проблем.

Они взрывоопасны, токсичны и частично теряют свои свойства при низких температурах.

Чтобы решить эти проблемы, некоторые учёные стараются улучшить конструкцию литий-ионных батарей, но некоторые их коллеги решили пойти дальше, и занялись разработкой собственных безопасных альтернатив.

Мы собрали для вас подборку из необычных, странных и перспективных альтернатив литий-ионным батареям.

Нанопроволочный аккумулятор на основе золота

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Своим появлением эта батарейка обязана Мие Ле Тай, студентке Калифорнийского университета, которая совершенно случайно создала её, экспериментируя в лаборатории с различными материалами.

Она нанесла на золотой нанопровод диоксид магния, а затем покрыла заготовку электролитным гелем, который быстро твердеет и по своим свойствам напоминает плексиглас.

Это позволяет на протяжении длительного времени сохранять структуру нанопроволоки.

Приступив к первому этапу тестирования, учёные с удивлением обнаружили, что изготовленный таким образом аккумулятор раз за разом продолжает исправно работать даже после 200 000 циклов зарядки и разрядки. Для сравнения отметим, что обычный литий-ионный аккумулятор уже после 600 циклов начинает терять ёмкость, редко доживая даже до нескольких тысяч.

Открытие состоялось весной 2016 года, но в продажу такие аккумуляторы всё ещё не поступили. Обычно между появлением первых тестовых образцов и коммерческой версией изобретения проходит несколько лет. Не исключено, что скоро нанопроволочные аккумуляторы на основе золота появятся в продаже.

Пенные аккумуляторы

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Компания Prieto использовала для создания аккумуляторов субстрат пенометалла (меди). Одно из главных преимуществ изобретения — отсутствие в нём электролита. Это значит, что пенный аккумулятор не загорится в самый неподходящий момент, как это иногда делают батареи, установленные в смартфоны Samsung. Кроме того, он способен работать гораздо дольше привычных литий-ионных батарей и их аналогов.

Плотность батареи Prieto в пять раз выше, пенный аккумулятор заряжается гораздо быстрее, но стоит в разы дешевле тех батарей, что сейчас есть в продаже.

Разработчики продолжают тестировать пенные батареи, но в скором времени планируют создать коммерческую версию продукта и начать внедрение новинки в сегменте мобильной электроники.

Со временем компания намерена выпустить и версию для электромобилей.

Алюминий-ионный аккумулятор

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Учёные из Стенфордского университета США разработали батарею, способную полностью заряжаться всего за одну минуту. Пока необычный аккумулятор находится на раннем этапе тестирования.

Для создания экспериментального образца аккумулятора учёные взяли алюминиевый анод, графитовый катод и жидкий ионный электролит. Всё это поместили в пакет с полимерным покрытием.

В данном случае электролит — это соль, которая находится в жидком состоянии при комнатной температуре. Это делает всю конструкцию очень безопасной, как пояснила одна из сотрудниц лаборатории.

Сейчас команда продолжает экспериментировать с разными материалами, поэтому сложно сказать, сможет ли их разработка в её текущем виде заменить привычные батареи в смартфонах, ноутбуках и другой бытовой электронике. Тем не менее, идея уже хороша своей дешевизной, безопасностью и простотой. Единственный серьёзный минус — ёмкость такого аккумулятора. Пока она даже на половину не дотягивает до литий-ионных.

Натрий-ионные аккумуляторы

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Попытки создать такие аккумуляторы предпринимались и ранее, но именно швейцарские учёные, как они заявляют, смогли вывести тип таких батарей на новый уровень.

На основе бороводородов они разработали новый твёрдый электролит для натрий-ионных аккумуляторов, что в итоге позволило создать твёрдый и стабильный источник питания с напряжением в три вольта. После 250 циклов зарядки-разрядки батарея сохраняет до 80% своей ёмкости.

Батарею продолжают тестировать, но её разработчики уверены, что смогут уже в ближайшие годы представить готовую к массовому производству версию.

Ранее для натрий-ионных аккумуляторов предлагалось использовать катоды на основе эльдфеллита, что позволило бы новым аккумуляторам достичь сравнимой с литий-ионными аналогами ёмкости, но с момента начала исследований в 2015 году прошло уже более четырёх лет, а результаты работы были опубликованы только на бумаге. Судьба инновационной батареи в данный момент неизвестна.

Аккумулятор-оригами

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Гибкий как бумага аккумулятор J.Flex создали инженеры компании Jenax. По своим свойствам она напоминает плотную бумагу, поэтому её можно складывать, как это показано на снимке.

Несмотря на сходство с бумагой, новинка не боится воды и может найти применение в самых различных сферах.

Умная одежда, умный дом, носимая и гибкая электроника, шпионская техника — это лишь то, что приходит на ум при первом взгляде на аккумулятор.

Разработчики сообщили, что тестовая батарея выдерживает 200 тысяч сгибаний без потери ёмкости. Интересно, что примерно столько же сгибаний выдерживает экран многострадального фаблета Galaxy Fold от Samsung.

Объём аккумулятора и его долговечность пока не раскрывают, видимо, планируя существенно увеличить его к моменту коммерческого релиза.

Батарея, работающая на… моче

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Ещё в 2013 году фонд Билла Гейтса пожертвовал круглую сумму разработчикам туалетов для тех районов нашей планеты, где отсутствует нормальное водоснабжение и царит полнейшая антисанитария. Но отсутствие воды — не единственная проблема. С электричеством в таких местах дело тоже обстоит не лучшим образом.

Грант от Билла Гейтса учёные успешно отработали и получили новое задание: превратить отходы жизнедеятельности человека в полезный ресурс, но не в удобрения.

Бристольская лаборатория робототехники взялась за дело и разработала технологию преобразования мочи в электричество. Учёные даже собрали рабочий прототип уринного аккумулятора, способного заржать смартфоны и другие небольшие гаджеты.

Закончилась история получением ещё одного гранта от Гейтса на продолжение исследований. Главной проблемой бристольского «туалетного аккумулятора» была небольшая мощность, поэтому разработчики озаботились вопросом создания связки из нескольких подобных устройств — это могло бы решить множество проблем и обеспечить полезный уровень электрической мощности.

Органический проточный аккумулятор

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

В Гарварде тоже озаботились безопасностью окружающей среды и решили внести свой вклад в создание чистых и возобновляемых источников энергии. Но, в отличие от коллег из Бристоля, американцы решили заменить электрокатализаторы из дорогостоящих драгоценных металлов на хиноды, которые можно добывать из некоторых растений или нефти.

В аккумуляторах проточного типа энергия накапливается за счёт двух разделённых мембраной жидких компонентов. В одной емкости находился электролит на основе хинона, в другой — жидкий бром.

Первые опытные образцы появились ещё в конце 2014 года и отлично себя зарекомендовали, демонстрируя высокую производительность и стабильность при очень небольшой себестоимости.

Но и у таких замечательных разработок есть свои недостатки: бром — едкий и экологически опасный материал, поэтому использовать его в аккумуляторах — не лучшая идея из-за сложностей с последующей утилизацией.

После того, как это стало очевидно, исследовали приступили к поиску замены брома на более экологичный компонент, но, судя по всему, пока не преуспели.

Песочная батарея

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Учёные из Калифорнийского университета в Риверсайде, будущем месте рождения капитана Джеймса Тиберия Кирка из Star Trek, решили не изобретать новых батарей, зато нашли способ значительно улучшить привычные всем литий-ионные батареи.

Для этого они взяли кварц, соль и магний. Затем обожгли полученную смесь, в результате чего смогли получить перспективную и недорогую замену графитовым анодам. Песочная альтернатива не только позволила немного сэкономить, но и увеличила производительность литий-ионных батарей, попутно продлив срок их службы.

Нанопористый аккумулятор

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Необычную альтернативу традиционным батареям предложили учёные из университета Мэриленда. Они разработали оригинальную конструкцию размером с почтовую марку из керамической пластины с крохотными сквозными отверстиями. Их заполнили электролитом, соединяющим электроды на верхней и нижней поверхности аккумулятора.

Прототип способен перезаряжаться тысячи раз. Время подзарядки составляет всего 12 минут. К сожалению, при всех достоинствах разработки, её ёмкость оставляет желать лучшего.

На момент публикации исследования учёные были заняты попытками увеличить ёмкость батареи хотя бы в десять раз, после чего планировали сразу же выпустить коммерческую версию аккумулятора.

С тех пор прошло уже около четырёх лет, поэтому можно предположить, что последняя стадия подготовки к коммерческой версии уже как раз в самом разгаре.

Термобатарея

Перспективные аккумуляторы, которые смогут заменить привычные литий-ионные батареи

Австралийский стартап Climate Change Technologies (CCT) разработал термобатарею, которая способна работать на протяжении двадцати лет. Ещё одно важное отличие от литий-ионных батарей — её ёмкость. Австралийская разработка способна запасать в шесть раз больше электричества.

Новинка поглощает электричество и хранит его в форме скрытого тепла. Внутри батареи расположена теплоизоляционная камера, внутри которой находится кремний, плавящийся при воздействии теплового элемента. Далее при необходимости тепловой двигатель преобразует тепло в электричество.

Термобатареи стоят на 30 процентов дешевле литий-ионных аналогов, не требуют обслуживания, а через двадцать лет могут быть легко утилизированы. Стартап уже готовится к производству первой партии, закончить которую планируется уже до конца 2019 года. В ближайших планах компании — строительство производств на территории Швеции, Дании и Нидерландов.

Источник: https://near-future.ru/perspektivnye-akkumuljatory-kotorye-smogut-zamenit-privychnye-litij-ionnye-batarei/

Эпоха новых аккумуляторов — Будущее на vc.ru

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Конспект статьи журнала Wired о том, почему учёные во всём мире ищут замену литий-ионному аккумулятору и какие альтернативы есть сегодня.

Современный смартфон — бомба замедленного действия, пишет Wired. Литий, который содержится в аккумуляторе, настолько взрывоопасен, что может воспламениться при контакте с водой. Лёгкий и энергоёмкий, он подходит для портативной электроники, но не справляется с большой нагрузкой.

В течение последних пятидесяти лет производители аккумуляторов и учёные со всего мира вынуждены искать баланс между мощностью аккумулятора и безопасностью его использования: при превышении допустимой нагрузки литий может взорваться.

Ожидается, что объём рынка внешних аккумуляторов достигнет $25 млрд к 2022 году. Тем не менее, большинство потребителей считают, что время работы внутреннего аккумулятора — одна из главных характеристик смартфона.

Десятки компаний пытаются создать новый тип аккумулятора: улучшить его энергоёмкость, срок службы. Сделать так, чтобы он заряжался в течение нескольких секунд и ему хватало заряда на целый день.

Как работает аккумулятор

В основе работы аккумулятора лежит химическая реакция. Его главные компоненты — отрицательно заряженный анод и положительно заряженный катод, разделённые электролитом.

Когда аккумулятор подключен к цепи, происходит окислительно-восстановительная реакция. Атомы металла теряют электроны и становятся положительно заряженными ионами, которые притягиваются к катоду.

Электроны, являясь отрицательно заряженными частицами, тоже притягиваются к катоду. В отличие от атомов металла, электроны притягиваются к катоду не через электролит, а по внешнему участку замкнутой электрической цепи.

Когда атомы металла больше не могут отдавать электроны, аккумулятор разряжается. Однако его можно снова использовать после подзарядки: электрический ток перемещает ионы и электроны обратно к катоду.

Электроды из чистого метала не выдерживают постоянного перемещения атомов и электронов, поэтому аккумуляторы делаются из различных смесей.

Создание литий-ионного аккумулятора

В 1977 году британский учёный Стэн Уиттингэм создал анод из алюминия и лития. При зарядке батареи ионы лития занимали пустые места между атомами алюминия. Уиттингэм создал первый в мире заряжаемый аккумулятор, однако при повышении напряжения он воспламенялся.

В 1980 году Джон Гуденаф, специалист по оксидам металла, вместо алюминия и лития использовал оксид лития-кобальта, который позволял «вытягивать» в два раза больше атомов лития.

В 1991 году компания Sony начала использовать катод Гуденафа и углеродный анод для аккумуляторов в видеокамере CCD-TR1. Это был первый потребительский товар с заряжаемым литий-ионным аккумулятором.

В течение 2000-2010 годов производители постоянно улучшали энергоёмкость аккумуляторов, но начиная с 2007 года даже минимальное увеличение энергоёмкости давалось всё сложнее.

Несмотря на тысячи опубликованных исследований, миллиарды потраченных долларов и десятки стартапов технология работы аккумулятора не сильно изменилась с 1991 года. Аккумулятор IPhone X по составу практически идентичен аккумулятору видеокамеры Sony.

На основе кремния

В 2011 году бывший сотрудник Tesla Джин Бердичевский вместе с Алексом Джейкобсом и Глебом Юшиным основал компанию Sila Nanotechnologies. Они решили использовать кремний как наиболее перспективный материал для производства аккумуляторов: атом кремния способен захватывать до четырёх ионов лития.

Эксперименты с кремнием проводились до 2011 года, однако безуспешно. При зарядке анод поглощает ионы лития и увеличивается в объёме, а при разрядке возвращается к прежнему размеру.

Расширение и сжатие анода — одна из причин, почему аккумулятор смартфонов теряет ёмкость со временем. Графитовый анод может служить около двух лет (1000 циклов разрядки), однако кремния хватает на пару циклов.

Компании Sila потребовалось пять лет, чтобы создать материал, позволяющий кремнию расширяться без изменения внешней структуры анода. По словам Бердичевского, материал будет доступен для производства в 2019 году и сможет повысить уровень безопасности использования аккумуляторов и увеличить энергоёмкость на 20% (а в будущем, возможно, до 40%).

Энергоёмкость современных аккумуляторов постоянно увеличивается, но вместе с ней увеличиваются и риски, потому что слои анода и катода становятся тоньше и располагаются всё ближе друг к другу. Даже маленькая ошибка может привести к катастрофе. Ярким примером тому служит Galaxy Note 7.

Так как литий опасен, то его количество в литий-ионном аккумуляторе не превышает 2%. Если бы можно было использовать чистый литий, энергоёмкость аккумулятора увеличилась бы в десятки раз. Основатель и генеральный директор Ionic Materials Майк Циммерман, возможно, нашёл способ использовать чистый литий в аккумуляторах.

По его мнению, проблема заключается в электролите. В последнее время заметна тенденция использования гелей и полимеров вместо жидких электролитов, однако они в основном огнеопасны.

Ionic Materials создала недорогой, гибкий и прочный полимер с электропроводностью при комнатной температуре.

Компания вбивала гвозди в аккумуляторы, стреляла в них из огнестрельного оружия и разрезала ножницами, но аккумуляторы не горели.

Циммерман считает, что новый полимер позволит использовать чистый литий и ускорит появление литий-серных и литий-кислородных аккумуляторов на рынке. Но будущее, возможно, не за литием.

На основе углерода

В 2013 году инженер-разработчик в Netscape Стивен Воллер основал компанию ZapGo, занимающуюся разработкой аккумуляторов на основе углерода. Эти аккумуляторы должны заряжаться так же быстро, как суперконденсаторы, сохранять заряд так же долго, как литий-ионные аккумуляторы.

Если аккумуляторы накапливают энергию благодаря химическим реакциям, то суперконденсаторы запасаются ею в электрическом поле. Однако они не могут накопить столько же энергии, как аккумуляторы, и теряют её очень быстро.

Некоторые учёные считают, что объединение суперконденсаторов с аккумуляторами может стать решением всех проблем. Суперконденсаторы могут лечь в основу гибридного телефона, который заряжается за пару минут и у которого есть запасной литий-ионный аккумулятор.

ZapGo разработала аккумулятор с твёрдым невзрывающимся электролитом и двумя электродами из тонких слоёв алюминия, покрытых наноуглеродным материалом.

В аккумуляторе не протекает никаких химических реакций, поэтому он может выдержать до 100 тысяч циклов разрядки (30 лет каждодневного использования), что невыгодно производителям техники.

Однако Воллер утверждает, что ZapGo может искусственно уменьшить его срок службы.

Аккумуляторам, разработанным ZapGo, ещё не хватает мощности, чтобы питать смартфоны, Воллер планирует решить эту проблему к 2022 году. Для этого придётся изменить способ зарядки смартфонов. Современное зарядное устройство замедляет количество электрического тока, поступающего в аккумулятор, чтобы он не износился раньше времени и не загорелся.

Для аккумулятора компании ZapGo или любого другого, работающего на базе суперконденсатора, нужно зарядное устройство, которое, наоборот, накапливало бы энергию из розетки и подавало бы её в телефон в один миг.

Углеродные аккумуляторы — это, возможно, один из шагов на пути к будущему, в котором у телефонов есть гибкие экраны и 5G-интернет.

Материал опубликован пользователем.
Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать

Источник: https://vc.ru/future/44033-epoha-novyh-akkumulyatorov

La crosse technology

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Литий-ионные аккумуляторы вошли в нашу жизнь вместе с сотовыми телефонами и мобильными устройствами. В быту для других автономных устройств до последнего времени литий-ионные аккумуляторы практически не использовались, основной источник питания таких устройств – никель-металлгидридные аккумуляторы привычных для нас размеров ААА, АА, С, D.

Сейчас их постепенно стали вытеснять аккумуляторы на основе лития, так как их преимущества в работе стали неоспоримы.

  • Очень низкий саморазряд. Потери энергии минимальны при правильной эксплуатации.
  • Высокая плотность энергии, соответственно более большая энергоемкость без увеличения размеров по сравнению с аналогичными никелевыми аккумуляторами.
  • Более высокое напряжение на выходе. В сравнении, минимальное для литиевых 3,6 Вольт при стандартном никелеевом 1,2 Вольт по тому же типоразмеру.
  • Уменьшении массы аккумулятора при сохранении габаритов.
  • Увеличенное количество циклов разряда-заряда при сохранении работоспособности.
  • Незначительное уменьшение работоспособности при потере энергоемкости после многочисленных циклов разряда-заряда.

Учитывая эти преимущества, все большее число профессиональных пользователей переводит свои автономные приборы на цилиндрические литий-ионные аккумуляторы и сборки из них. При этом не все знают, как правильно пользоваться, обслуживать, хранить новые источники питания. А также подобрать их по размеру и токовым параметрам.

Обозначение размеров цилиндрических литий-ионных аккумуляторов отличается от привычных для всех никелевых – он цифровой, например, 14500 или 18650.

Такое кодирование непривычно, но при этом удобно для подбора необходимого аккумулятора по размеру слота электронного устройства.

Первые две цифры кода обозначают диаметр аккумулятора в миллиметрах, вторые – его высоту. Например, типоразмер 18650: 18мм диаметр, 65мм высота.

Правила эксплуатации литий-ионных аккумуляторов и сборок

Литий-ионные аккумуляторы одновременно надежны и капризны, что на первый взгляд кажется парадоксом. Они прихотливы в хранении, обслуживании и эксплуатации. При нарушении условий использования очень быстро выходят из строя. Но при соблюдении всех правил служат долго с высокой производительностью.

Основные ограничения:

  • Минимальное напряжение для литий-ионных аккумуляторов не должно быть меньше 2,2-2,5 Вольт.
  • Максимальное напряжение для литий-ионных аккумуляторов не должно быть больше 4,25-4,35 Вольт.
  • Литий-ионные аккумуляторы неплохо работают при минусовой температуре, но при этом заряжать их на холоде нельзя, тем более если температура ниже нуля градусов.
  • Ток заряда литий-ионных аккумуляторов должен быть не выше половины их емкости. Например, для аккумулятора 2000мАч максимальный ток заряда должен быть 900-1000 мА.
  • Ток разряда (рабочий) не должен быть выше 2-кратного значения емкости аккумулятора. Например, для аккумулятора емкостью 2000мАч максимальный ток разряда 4000мА.
  • Исключения составляют высокомощные литий-ионные аккумуляторы, ток разряда которых может превышать их энергоемкость в 5-10 раз. Такие аккумуляторы маркируются соответствующей надписью.

Цилиндрические литий-ионные аккумуляторы часто используются для больших батарейных сборок. Аккумуляторные сборки обладают более высокой мощностью и длительным сроком одного цикла работы. Такие аккумуляторные сборки используются в высокомощных устройствах. Вот так выглядит литий-ионная аккумуляторная батарея мощного шуруповерта или дрели.

При самостоятельной сборке аккумуляторной батареи следует помнить, что литий-ионные аккумуляторы не терпят перегрева, поэтому ПАЯТЬ их НЕЛЬЗЯ! Такая аккумуляторная сборка работать не будет, так как с уверенностью можно сказать, что пайка контактов вывела аккумуляторы из строя.

При сборке аккумуляторной батареи применяется специальная сварочная лента и контактная сварка.

Для безопасной работы батареи необходим контроллер заряда-разряда.

При сборке аккумуляторных батарей используются только незащищенные литий-ионные аккумуляторы! Используя их можно собрать большой очень энергоемкий аккумулятор (аккумуляторную батарею), которая может использоваться в мощных электроприборах, служить дополнительным источник питания.

Такие батареи стоят в электродрелях, шуруповертах, прожекторах, фото- и видеотехнике, ноутбуках, мониторах и т.д. с обязательным дополнением защиты от перенапряжения, перегрева и короткого замыкания в виде платы контроллера.

Защищенные или незащищенные литий-ионные аккумуляторы

В чем отличия и какой выбрать? – главный вопрос волнующий обычного пользователя. Ответ находится в названии: защищенные имеют собственную плату защиты от перегрева и перенапряжения и не нуждаются в дополнительном контроллере заряда-разряда.

Если вы хотите собрать собственную батарею из литий-ионных аккумуляторов или заменить аккумулятор в готовой батарее электроустройства (например, шуруповерта), вам необходим незащищенный литий-ионный аккумулятор.

В остальных случаях – при замене оригинальных аккумуляторов приборов или переводе их с никель-металлгидридных на литиевые – необходимо купить защищенный литий-ионный аккумулятор.

Если вскрыть оболочку защищенного литий-ионного аккумулятора, то под ней найдем обычный незащищенный с теми же параметрами, что указаны на внешней оболочке.

Главное отличие защищенного аккумулятора от незащищенного – приваренная к одному из контактов электронная плата защиты.

Плата защиты при помощи сварочной ленты приваривается к одному из контактов не защищенного литий-ионного аккумулятора.

Затем все упаковывается в пленку с маркировкой производителя защищенных аккумуляторов. Добросовестные производители, указывают на внешней упаковке производителя используемого незащищенного аккумулятора и параметры в соответствии с маркировкой незащищенного аккумулятора.

При выборе защищенного аккумулятора для своего устройства следует учитывать один очень важный момент. Из-за приваренной платы защиты и упаковки в пленку размер аккумулятора становится чуть больше заявленного, изначального размера незащищенного аккумулятора.

Высота увеличивается на 3-5мм.

Диаметр становится больше примерно на 0,5 мм.

При выборе защищенного аккумулятора необходимо поинтересоваться изготовителем незащищенного. К сожалению, не все производители указывают его на упаковке, хотя нередко используют незащищенные аккумуляторы не собственного производства.

К примеру, приваривают защиту и упаковывают незащищенные аккумуляторы известных брендов Panasonic, Sony, Samsung и других. Не следует покупать защищенные аккумуляторы, если на них не указаны все параметры «начинки»: энергоемкость, напряжение, плата защиты.

Стоит проверить защищенные аккумуляторы на ощупь – не смещается ли при нажатии плата защиты на плюсовом контакте, она обязательно должна быть приварена.

Заряжать цилиндрические литий-ионные аккумуляторы можно только специальными зарядными устройствами. В связи с популяризацией литий-ионных аккумуляторов ассортимент зарядных устройств для Li-Ion растет.

При выборе зарядного устройства необходимо обратить внимание на его параметры заряда-разряда, размер слотов и соотнести их с используемыми литий-ионными аккумуляторами для правильной эксплуатации и сохранения работоспособности.

Источник: https://www.lacrossetechnology.ru/vibor-lion-akkum.html

Есть зарядка? Что придет на смену литий-ионным аккумуляторам

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

МОСКВА, 4 окт – РИА Новости. Антон Поляков. Если у вас есть современный смартфон, вам наверняка хоть раз в жизни приходилось в конце рабочего дня спрашивать у коллег или друзей зарядное устройство.

Хотя, возможно, вы и так всегда носите “зарядку” с собой, зная, что при интенсивном использовании гаджет, особенно двух- или трехгодовалый, может сесть в самый неподходящий момент.

Парадокс, но несмотря на тот огромный путь, что проделала электроника за последние 30 лет, все мобильные устройства по-прежнему оснащаются литий-ионными аккумуляторами, вышедшими на рынок аж в 1991 году, когда вершиной инженерной мысли в портативной технике был обычный CD-плеер.

Технология по-прежнему живее всех живых.

Самый известный предприниматель современности Илон Маск два года назад вложил пять миллиардов долларов в строительство своей “Гигафабрики” — огромного завода по производству литий-ионных аккумуляторов для электромобилей Tesla. Но что если ставка американского IT-бизнесмена оказалась ошибочной? Мы решили рассмотреть, какие технологии могут преобразить мир электроники в будущем.

Натрий

По мнению многих исследователей именно этот щелочной метал должен заменить дорогой и редкий литий, который, к тому же, является химически активным и пожароопасным. Принцип работы натриевых аккумуляторов аналогичен литиевым – для переноса заряда в них используются ионы металла.

Долгие годы ученые различных лабораторий и институтов боролись с недостатками натриевой технологии, такими как медленная зарядка и низкие токи. Некоторым из них удалось решить проблему.

Например, предсерийные образцы аккумуляторов компании BroadBit заряжаются за пять минут и имеют в полтора-два раза большую емкость.

Получив несколько наград в Европе, таких как Innovation Radar Prize, Eureka Innovest Award и ряд других, компания перешла к сертификации, постройке фабрики и получению патентов.

Графен

Графен – плоская кристаллическая решетка из атомов углерода толщиной в один атом. Благодаря огромной площади поверхности в компактном объеме, способной накапливать заряд, графен является идеальным решением для создания компактных суперконденсаторов.

Уже сейчас существуют экспериментальные модели емкостью до 10 000 Фарад! Такой суперконденсатор создан компанией Sunvault Energy совместно с Edison Power. Разработчики утверждают, что в перспективе представят модель, энергии которой хватит для электроснабжения целого дома.

Плюсов у таких суперконденсаторов множество: возможность практически мгновенного заряда, экологичность,  безопасность, компактность, а также дешевизна. Благодаря новой технологии получения графена, сродни печати на 3D-принтере, Sunvault обещает стоимость батарей чуть ли не в десять раз меньшую, чем у литий-ионных технологий.

Однако до промышленного производства пока еще далеко.
Есть у Sanvault и конкуренты. Группа ученых из университета Свинбурна, Австралия, также представила графеновый суперконденсатор, который по емкости сопоставим с литий-ионными аккумуляторами. Его зарядка производится за несколько секунд.

Вдобавок он гибкий, что позволит его использовать в устройствах различных форм-факторов, и даже в элементах умной одежды.

Атомные батареи

Атомные батареи пока очень дороги. В ближайшее время они не смогут составить конкуренцию привычным нам литий-ионным аккумуляторам, но не упомянуть про них нельзя, ведь источники, непрерывно вырабатывающие энергию на протяжении 50 лет – это намного интереснее, чем перезаряжаемые аккумуляторы.

Принцип их работы, в некотором смысле, схож с работой солнечных батарей, только вместо солнца источником энергии в них являются изотопы с бета-излучением, которое затем поглощается полупроводниковыми элементами.

В отличие от гамма-излучения, бета излучение практически не опасно. Оно представляет собой поток заряженных частиц и легко экранируется тонкими слоями специальных материалов. Также оно активно поглощается воздушной средой.

На сегодняшний день разработки подобных батарей ведутся во многих институтах.

В России о совместной работе в этом направлении объявляли НИТУ “МИСиС”, МФТИ и НПО “Луч”. А ранее аналогичный проект был запущен Томским Политехническим Университетом.

В обоих проектах основным веществом является никель-63, получаемый облучением нейтронами изотопа никель-62 в ядерном реакторе с дальнейшей радиохимической переработкой и разделением на газовых центрифугах. Первый прототип батареи должен быть готов в 2017 году.

Однако подобные бета-вольтаические источники питания являются маломощными и крайне дорогостоящими. В случае с российской разработкой предполагаемая стоимость миниатюрного источника питания может составить до 4,5 миллионов рублей.

У никеля-63 также есть конкуренты. Например, в Университете Миссури давно экспериментируют со стронцием-90, а в свободной продаже можно найти миниатюрные бета-вольтаические батареи на основе трития. При цене в районе тысячи долларов они способны питать различные кардиостимуляторы, датчики или компенсировать саморазряд литий-ионных аккумуляторов.

Несмотря на приближение к серийному производству первых натриевых аккумуляторов и активной работе над графеновыми источниками питания, специалисты в отрасли никаких революций на ближайшие несколько лет не предрекают.

В компании “Литеко”, работающей под крылом “Роснано” и производящей в России литий-ионные аккумуляторы, считают, что поводов к замедлению роста рынка пока нет. “Устойчивый спрос на литий-ионные аккумуляторы обусловлен, прежде всего, их высокой удельной энергией (запасённой на единицу массы или объёма).

По этому параметру они не имеют конкурентов среди перезаряжаемых химических источников тока, производимых на данный момент серийно”  комментируют в компании.

Впрочем, в случае коммерческого успеха тех же натриевых аккумуляторов BroadBit, рынок может переформатироваться в считанные годы.

Если только владельцы и акционеры не захотят изрядно подзаработать на новой технологии.

Источник: https://ria.ru/20161004/1478440820.html

Срок службы литий ионного аккумулятора

НОВЫЕ ЛИТИЕВЫЕ АККУМУЛЯТОРЫ

Срок службы литиевого аккумулятора, который в настоящий момент значительно увеличен, одна из причин, почему элементы сразу покорили рынок. Li-ion имеют долгую историю, если её сравнивать со скоростью развития электроники.

Каков срок службы литий-ионных аккумуляторов и как его увеличить

Срок службы литий-ионных аккумуляторов создатели новых технологий продлили до 10 лет. Благодаря легкости обслуживания, компактности, пониженному саморазряду, уровню энергоемкости накопитель широко используют в электронных устройствах.

Без мобильных телефонов, смартфонов ноутбуков невозможно представить жизнь, для которых Li-ion являются источниками питания. Любой элемент имеет эксплуатационный срок, положительные и отрицательные свойства. Эта батарейка тоже наделена рядом факторов.

Владельцы следят за ними, продлевают работоспособность правильным содержанием.

Срок службы литий ионного аккумулятора, что представляет собой Li-ion

Понять его принцип действия, выполнение требований и бережному хранению поможет структура элемента.

Li-ion находится в воздухонепроницаемом корпусе, содержимое состоит из 2 электродов – положительного катода и отрицательного катода. Их разделяет пористый сепаратор, пропитанный электролитом из литиевой соли, который      служит накопителем электроэнергии.

Разделительный материал:

  • предотвращает соединение плюса с минусом;
  • исключает возможность для короткого замыкания;
  • обеспечивает высокую ионную проводимость.

Появление электрического тока осуществляет ионный поток, они перемещаются из анода в катод.

Батареи выпускают разными по электрическим характеристикам, габаритам и размерам. Единого ГОСТа для них не существует.

Факторы воздействия

Когда ресурс батареи полностью вырабатывается, объем емкости снижается до положения равного техническим параметрам, элемент меняют. Уровень емкости источника энергии, установленный производителем при практическом использовании может уменьшаться или увеличиваться. Отклонения и служба зависят от правильного:

  • хранения;
  • ухода;
  • температурных условий;
  • зарядного режима;
  • глубины разряда.

Что влияет на срок службы литий-ионных батарей?

Если батарея не держит заряд, нужно выяснить отчего элемент вышел из строя. Владелец должен следить за его режимом нагрева. Эксплуатация по инструкции продлит жизнь накопителя.

Температура враг устройства, которая повышается от неправильного хранения, скорости и продолжительности зарядно-разрядных операций.

Окружающая среда тоже действует на литий, аппарат с блоком питания нельзя забывать на солнечных площадках, внутри жаркого автомобиля.

Характерные особенности тепловых воздействий:

  • идеальные условия для работы при комнатной температуре – +20 град.;
  • при нагревании устройства +30 град. сохранение заряда уменьшается на 20%;
  • использование прибора с батареей при + 45 град. снижение емкости происходит до 50%.

Чтобы исключить перегрев, ноутбук избавляют от лишних приложений, переходят в прохладное помещение. На холоде эксплуатация не вызывает проблем, если он не доходит до минусовых температур. Восстановить литиевый источник питания смартфона сможет карман, компьютера — любое теплое место.

Не стоит допускать глубокий разряд элемента. Производитель предусмотрел соблюдение циклов для 100 % уровня зарядки. В телефоне видно, когда загорается красная черта. Владельцу нужно следить и не допускать полного отключения питания.

Условия для сохранности

Существуют несколько простых правил, соблюдение которых способны увеличивать работоспособность Li-ion:

  • батарея и устройство должны быть от оригинального производителя;
  • полная зарядка выполняется сразу после покупки, изготовитель наполовину заряжает аккумулятор, чтобы не было потерь при транспортировке;
  • работают с прибором в ограниченном температурном режиме, не повышая + 30 град., не опускаясь до – 20 град. нельзя его переохлаждать или перегревать.
  • не допускают полной разрядки, используют устройство при 10% — 90% заполненного объема емкости;
  • если предстоит надолго оставить батарею, её заряжают на 50%.

От хранения тоже зависит продолжительность службы. Просто так вынуть и положить на полку элемент нельзя, емкость будет сжиматься от длительных простоев. Только после показателя не ниже 40% зарядки, устройство плотно упаковывают и помещают в холодное место.

Порядок для зарядки

В Li-ion комбинированный зарядка, она состоит из 2 циклов. Вначале идет непрерывно электрический ток до определенного значения в течение 40 мин., затем также поступает напряжение до 1.5 часов. В импульсном режиме накопитель заряжается быстрее.

Во время использования соблюдают ряд ограничительных условий:

  • емкость аккумулятора в 2 раза меньше разрядного тока — при значении равном 2100 мАЧ, допускается ток в 4200 мА;
  • нельзя отметку опускать ниже 2.3 вольт;
  • перезаряд не должен быть больше напряжения 4.4 В.

Он своевременно восстанавливает потерю энергии. Если производитель не установил этого элемента, АКБ создал из нескольких частей, а питающие компоненты во время разряда не сбалансированы, напряжение выровняется при полном заряде батареи. В литий-ионных устройствах балансир регулирует напряжение с током в отдельных сегментах.

Каких ошибок нужно избежать?

Поврежденный внутренний сепаратор приведет к негативным последствиям:

  • короткому замыканию;
  • возгоранию.

Убережет Li-ion батарею от пожара исключение при эксплуатации недопустимых ошибок:

  • сгиб и деформацию корпуса;
  • перегрев устройства;
  • игнорирование порядка в зарядке и разрядке;
  • превышение допустимого напряжения, подачу электротока.

Чего нельзя делать:

  • долго батарее оставаться разряженной через время саморазряд напряжения снизится до критического, и защита отключит, ЗУ не выведет из такого состояния;
  • пытаться разобрать и ремонтировать неисправное устройство.

Для вмешательства в сложную схему необходима специальная аппаратура. Правильный уход, содержание приборов увеличат их срок годности с любыми источниками питания.

Li-ion имеют долгую историю, если её сравнивать со скоростью развития электроники. Существует много причин, почему элементы сразу не покорили рынок, самая важная — это срок службы литиевых аккумуляторов, который в настоящий момент значительно увеличен.

Источник: https://3batareiki.ru/akkumulyatory/srok-sluzhby-litij-ionnogo-akkumulyatora

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.