ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Содержание

Диммер для светодиодных ламп 220в своими руками – схема

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Ещё совсем недавно для того, чтобы регулировать яркость освещения включённой лампы использовали реостаты, которые не могли обеспечить необходимую экономию электроэнергии.

Всё потому, что такой механизм никак не влиял на используемую мощность даже в том случае, когда яркость света уменьшалась до максимального предела.

Но технологии не стоят на месте и могут порадовать нас самыми новейшими разработками, которые в состоянии не только создать наиболее комфортные условия для нашей жизни, но и позволить значительно экономить свои средства, не ущемляя при этом никакие существующие потребности и желания.

Одним из таких оптимизированных устройств стал диммер, применяемый в качестве дополнительного элемента для люминесцентных и светодиодных ламп, а так же для обычных ламп накаливания, которые всё так же используются многими людьми.

И всё же сегодня хотелось остановить внимание именно на той разновидности диммера, которая стала неотъемлемой частью светодиодных ламп 220 в, и более подробно понять для себя, что же представляет собой новый усовершенствованный механизм, разработанный в качестве альтернативы устаревшим реостатам.

Принцип работы

Диммером называют устройство, которое не только может регулировать яркость освещения светодиодных ламп, но также эффективно экономит всю потребляемую электроэнергию, позволяя тем самым свести к минимуму свои денежные расходы.

Очень важно понимать, что не все светодиодные и люминесцентные лампы диммируются и могут функционировать с помощью диммера. Поэтому при выборе необходимого освещения следует заранее узнать, возможно ли дальнейшее использование такого механизма с той или иной лампой.

Помимо прочего, область применения диммера заключена в использовании данного устройства в качестве прибора, регулирующего температуру в резисторных нагревателях, и порой его применяют в электродвигателях для контроля частоты вращения механизма.

Но наибольшую популярность диммер приобрёл, выступая в роли обычного выключателя или выполняя свои функции в качестве удобного светорегулятора.

Преимущества и недостатки

Отталкиваясь от основных плюсов можно точно для себя определить, стоит ли вашего внимания данный прибор и подходит ли он вам для тех целей, которые вы бы хотели получить в конечном итоге.

К преимуществам можно отнести следующее:

  • Более “мягкое” включение и выключение освещения, что гарантирует длительный срок эксплуатации данного оборудования.
  • Возможность создания необходимого зонирования комнаты с помощью точечного освещения, позволяя тем самым создать наиболее комфортную обстановку в доме.
  • Наличие дополнительных функций, которые позволяют управлять механизмом на расстоянии с помощью специального пульта или благодаря звуковому воздействию.
  • Возможность оформления различных световых композиций, с помощью которых можно воплощать в реальность самые разнообразные дизайнерские задумки в любом интерьере.
  • Существование дополнительных удобств, таких как использование сенсорной панели, благодаря наличию которой можно точно определять местоположение светорегулятора.

Чтобы раскрыть все карты перед читателями и не утаить ничего существенного, дабы потребитель смог чётко для себя решить, стоит ли диммер того внимания, на которое так рассчитывает его производитель, рассмотрим и все существующие недостатки, включающие в себя:

  • Один самый распространённый миф о том, что подобное устройство может обеспечить плавное включение и выключение. На самом деле никто не может вам гарантировать такую функцию с полной уверенностью, ведь светорегулятор не в силах предотвратить последующий после включения устройства бросок напряжения.
  • Наличие ещё одного мифа, который обещает потребителю возможность экономии электроэнергии. Существует вероятность того, что уменьшая яркость освещения, вся лишняя энергия преобразуется в тепло, которое всё равно учитывается счётчиком, и вам всё же придётся заплатить за намотанные цифры.
  • Существование опасности выхода из строя и возгорания всего автомата защиты, несмотря на то, что диммеры защищены от всех возможных электрических замыканий.
  • Также данное устройство не в состоянии при необходимости разомкнуть цепь, что может привести к неминуемому возгоранию всей электросети.

Характеристики

К основным техническим характеристикам относят два основных показателя:

  1. существующий диапазон используемой устройством мощности;
  2. способ регулировки необходимого освещения:
    • дистанционный;
    • кнопочный;
    • поворотный;
    • сенсорный.

Однако у разных моделей существует ряд других характеристик, которые исходят из существующих дополнительных функций.

Функции

Помимо основной функции регулирования яркости светового потока существует ещё ряд дополнительных опций, к которым можно отнести следующее:

  • возможность автоматического отключения светильника;
  • наличие имитирующей функции, создающей ощущение присутствия человека в доме;
  • плавное включение или отключение светильника;
  • использование нескольких режимов затемнения;
  • возможность дистанционного управления;
  • выносливость прибора и возможность его функционирования при воздействии любых температурных режимов помещения.

Виды диммеров для светодиодных ламп

Если классифицировать светорегуляторы для светодиодных ламп 220 в по типу установки, то различают несколько моделей:

  • Модульные диммеры. Их монтаж происходит с помощью DIN-рейки, выполняя установку в распределительном щитке.
  • Моноблочные механизмы. Такое устройство используется вместо обычного выключателя.
  • Выносные блоки. Применяются для установки точечных светильников.

Совместимость

Для корректной работы светорегулятора со светодиодной лампой рекомендуют останавливать выбор на стандартных моделях, которые уже имеют в комплектации подходящий светодиод, либо приобретать ШИМ-диммер, используемый совместно со многими видами ламп.

Чтобы наверняка определить то, насколько выбранный вами механизм в состоянии корректно работать совместно с выбранной лампой, лучше всего воспользоваться эмпирическим методом.

Для этого стоит перед покупкой ещё в магазине проверить правильное функционирование диммера с определённым видом освещения.

Консультант в этом случае всегда пойдёт навстречу клиенту и позволит проверить взаимодействие диммера и лампы не отходя от кассы.

Критерии выбора

Для выбора подходящей модели используют следующие критерии:

  • Совместимость используемой лампы с выбранным диммером.
  • Желаемый способ управления установленным устройством.
  • Наличие дополнительных функций, которые покупатель хотел бы видеть в выбранном приборе.

Подключение диммера к светодиодам своими руками

Чтобы подключить светорегулятор собственноручно вам понадобится лишь приобретённое устройство, специальный динамометрический ключ и любое удобное режущее средство для зачистки проводов.

Пошаговая инструкция состоит из трёх этапов:

  1. Перед началом всех монтажных работ необходимо обязательно выключить в доме всё электричество.
  2. Далее следует зачистить провода на приборе и подключить их таким образом, чтобы фазовый провод был установлен в клемму под названием L, а второй был подключен к разъёму под названием N.
  3. На завершающем этапе эти провода следует зажать и закрутить все имеющиеся болты, надев специальную рамку.

Цена

Стоимость может зависеть от разновидности модели и наличия всех дополнительных функций. Более дорогие модели могут похвастаться обширным перечнем различных вспомогательных опций, позволяющих с наибольшим комфортом использовать данное устройство. Цена варьируется в пределах от 100 до 1000 рублей. Гораздо дороже вам обойдутся модели с дистанционным управлением.

Как сделать своими руками

Если вы хоть немного дружите с паяльником, тогда сделать устройство самостоятельно не составит слишком большого труда. Для работы вам понадобятся следующие элементы:

  • два резистора (переменный и постоянный);
  • провода;
  • неполярный конденсатор;
  • симистор и динистор.

Все последующие действия производят, отталкиваясь от основной схемы, предоставленной ниже:

С помощью переменного резистора подаётся ток на встроенный конденсатор. Таким образом сам конденсатор заряжается, и лампочка начинает гореть.

Чтобы собрать диммер следует все детали соединить между собой таким образом, как указано на схеме. На конечном этапе все концы используемых элементов необходимо припаять к медным проводам, предварительно осуществив обязательное обезжиривание.

Источник: https://househill.ru/kommunikacii/electrika/stabilizatory/dimmer.html

Плавное включение и выключение светодиодов своими руками

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Ещё совсем недавно для того, чтобы регулировать яркость освещения включённой лампы использовали реостаты, которые не могли обеспечить необходимую экономию электроэнергии.

Всё потому, что такой механизм никак не влиял на используемую мощность даже в том случае, когда яркость света уменьшалась до максимального предела.

Но технологии не стоят на месте и могут порадовать нас самыми новейшими разработками, которые в состоянии не только создать наиболее комфортные условия для нашей жизни, но и позволить значительно экономить свои средства, не ущемляя при этом никакие существующие потребности и желания.

Одним из таких оптимизированных устройств стал диммер, применяемый в качестве дополнительного элемента для люминесцентных и светодиодных ламп, а так же для обычных ламп накаливания, которые всё так же используются многими людьми.

И всё же сегодня хотелось остановить внимание именно на той разновидности диммера, которая стала неотъемлемой частью светодиодных ламп 220 в, и более подробно понять для себя, что же представляет собой новый усовершенствованный механизм, разработанный в качестве альтернативы устаревшим реостатам.

Плавное включение ламп накаливания (cхемы, устройство)

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Источник: http://1000leds.ru/plavnoe-vklyuchenie-i-vyklyuchenie-svetodiodov-svoimi-rukami/

Плавное включения светодиодов – перспективное решение для автотюнинга

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Постоянно расширяющаяся сфера применения отлично работающих светодиодов раскрывает потребителям их дополнительные возможности. Одним из свойств, которые подчеркивают преимущества LED-светильников, является плавное включение светодиода, которое значительно расширяет их дизайнерские возможности.

Перспективы применения плавного розжига светодиодов

Необычные компоновки LED-светильников находят все большее применение в автомобилестроении, в дизайнерском оформлении зданий и помещений, создании непередаваемой атмосферы игры света на различных массовых мероприятиях.

Учитывая возможность самостоятельно смонтировать плавное включение светодиода, в ближайшие годы можно ожидать еще большего их распространения.

Даже простая схема для плавного розжига и выключения светодиодов значительно повышает комфортность их применения:

  • подсветка на приборах включается/выключается плавно, не ослепляя водителя в ночное время;
  • свет в салоне зажигается постепенно при открытии дверей;
  • плавное включение габаритного освещения значительно продлевает срок эксплуатации LED-светильников.

Примечательно, что устройство плавного розжига светодиодных ламп, при небольшой потребляемой мощности, предполагает лишь параллельный монтаж полярного конденсатора. Емкость конденсатора не должна быть больше 2200 МкФ, а его плюсовой вывод припаивается к анодному проводу светодиода. Отрицательный вывод – присоединяется к катодному проводу.

О полярности при пайке конденсатора следует помнить, иначе он может просто взорваться при розжиге.

Преимущества светодиодов на основе тиристоров

По сети гуляет анекдот, связанный с тем, что в ответ на вопрос, мигает ли лампочка на модеме, пользователь ответил, что свет мигающий, но это не лампочка, а тиристорный светодиод, чем и сбил с толку работников техподдержки провайдера, поскольку таких светодиодов просто не бывает.

Тиристор может выполнять только роль своеобразного ключа, управляющего мощной нагрузкой, а также переключателя. Определение тиристорный светодиод появилось после того, как производители светильников заменили дорогостоящий диодный мост, применявшийся для того, чтобы запустить LED.

Создав прибор, состоящий из 2-х тиристоров, подключенных параллельно-встречным путем, удалось избавиться от диодного моста. Благодаря тому, что был использован такой своеобразный тиристорный светодиод – цена LED-светильников значительно снизилась и стала приемлемой для покупателя.

Свойства электронного ключа позволяют создать не только плавное включение светодиодов – тиристора применяются и в схемах, обеспечивающих постепенное включение/выключение даже простых ламп накаливания (специальные выключатели).

Учитывая приемлемую цену LED-светильников без диодного моста, плавное включение и выключение светодиодов на тиристоре значительно расширяет область применения этого современного и эффективного средства подсветки и освещения.

Плавный розжиг и затухание возможно сделать самим

Так называемая вежливая подсветка в автомобиле именуется как плавный розжиг и затухание светодиодов или их платы. Она необходима с целью предотвращения случайного ослепления. Плавность включения делает световой источник визуально эффектным. В статье присутствует несколько вариантов схем, которые помогут обустроить плавную подсветку не только в салоне авто, но и внутри фар.

В Интернете присутствует изобилие схем плавного включения и затухания светодиодов (с напряжением от 12В), которые можно выполнить самостоятельно. У всех их есть определенные достоинства и изъяны, разные уровни сложности, а также различия в качестве электронной схемы.

Зачастую, в сооружении громоздких плат с дорогими деталями и прочим наполнением нет смысла. Стоит отметить, что плавное включение светодиода на одном транзисторе, а также его выключение – технически возможно.

Лишь единственный транзистор с малой обвязкой будет достаточным для корректной и постепенной активации светодиодного кристалла. Далее представлена схема, которая проста в реализации и не требует дорогостоящих материалов.

Включение и выключение в ней осуществляется посредством плюсового привода.

При начале подачи напряжения сквозь резистор R2 протекает ток и оптимизирует конденсатор С1. Стоит учесть, что напряжение в конденсаторе не способно мгновенно изменяться, а это играет на руку плавному открыванию транзистора VT1.

Ток затвора который продолжает нарастать (вывод 1) проходит через резистор R1, а также взращивает положительный потенциал на самом стоке (выход 2) транзистора. Как результат наступает плавная активация светодиодов. При деактивации питания случается разрыв функционирующей электрической цепи по плюсу (управляющему).

В свою очередь конденсатор постепенно разряжается, и отдает свою энергию R1 и R3 (резисторам). Разряд и его скорость определяет номинал резистора R3. С возрастанием сопротивления накопившаяся энергия пойдет на транзистор. Это означает, что процесс затухания будет протекать дольше.

Чтобы можно было настроить время полноценного включения и деактивации напряжения, схему можно разнообразить резисторами R4, а также R5. Не смотря на это, для корректной работы данную схему лучше применять с резисторами R3 и R2 с небольшим рабочим номиналом.

Стоит учесть, что каждую из схем можно сложить самостоятельно даже на маленькой плате. Нужно детальнее рассмотреть элементы схемы. Основной составляющей управления считается n-канальный транзистор IRF540.

Транзистором именуется прибор полупроводникового типа, который способен генерировать или усиливать колебания. Стоковое напряжение транзистора может достигать 23 А, а также 100В – напряжение сток-исток. Вместо указанного в схеме транзистора можно применять КП540 (аналог отечественный).

За розжиг светодиодов и плавность их выключения отвечает сопротивление R2, значение которого не должно превышать 30–68 кОм.

Стоит отметить, что резистор представляет собой составляющую электрических цепей пассивного типа, которой свойственен переменный или определенный показатель электрического сопротивления. Основная функция резистора состоит в линейном преобразовании напряжения в силу тока и наоборот, и т.д.

За плавное затухание (выключение) отвечает сопротивление R3 с рабочим диапазоном в 20–51 кОм. С целью задания напряжения затвора существует сопротивление R1, номинал которого 10 кОм.

Емкость конденсатора С1 (минимальная) обязана достигать 220 мкФ с максимальным напряжением около 16 В. Если емкость увеличить до 470 мкФ, то возрастет и время на полное выключение и розжиг светодиода.

В случае покупки конденсатора, работающего с большим напряжением, понадобится увеличение и самой платы.

Управление и его корректировка по «минусу»

Представленные выше схемы идеальны для внедрения их в устройство автомобиля. Стоит учесть, что сложность выполнения электрических схем заключается в замыкании некоторых контактов относительно полюса, а остальных по минусу (корпусной части или приводу).

Для управления приведенной схемой по минусу, необходимо осуществить ее доработку. К примеру, следует заменить транзистор на «p-канальный», для этого подойдет IRF9540N.

Далее, вывод к минусу конденсатора нужно соединить с точкой троих резисторов, которая является общей для них. К истоку VT1 следует замкнуть плюсовой вывод.

Подлежащая доработке схема будет иметь обратную полярность в своем питании, при этом плюсовой контакт при управлении сменится минусовым.

Ардуино: секреты работы с ним

Arduino – является инструментом для создания разных устройств электронного типа, разработан для непрофессиональных пользователей. Речь идет о проектировке робототехники, а также систем автоматики. Устройства, работающие на Arduino, могут принимать сигналы из разных датчиков и производить управление исполнительными приспособлениями.

Arduino представляет собой плату небольших размеров, оборудованную индивидуальной памятью и процессором, которые находят взаимодействие со средой их окружения. Данная особенность существенно отличает такое устройство от ПК, который не покидает рамок виртуального мира. Помимо этого, Arduino способен работать вместе с компьютером или в автономном (индивидуальном) режиме.

На плате устройства присутствуют несколько десятков контактов. Именно к ним можно осуществить подключение: датчиков, светодиодов, плат расширения, моторов, и т.д.

В сам процессор стоит загрузить приложение для Ардуино или скетч, она способна принимать все показания, а также управлять устройствами, согласно заданного алгоритма.

Стоит отметить, что выходы на плате Ардуино именуются Pin, поэтому после загрузки скетча станет ясно, как работать с таким инструментом.

Возможно ли плавное включение светодиода на ардуино? Для начала стоит применить упрощенный скетч плавный розжиг светодиодов. Яркость светодиодов будет изменена при помощи ШИМ. Для этого понадобятся следующие составляющие:
  1. Плата Arduino Uno;
  2. Светодиод;
  3. Плата-макет;
  4. Резистор на 220 Ом;
  5. Провода.

Стоит знать, что АnalogWrite (функция) используется с целью затухания и медленного розжига светодиода. Именно AnalogWrite применяет модуляцию широтно-импульсного типа (PWM). Она позволяет осуществлять активацию и деактивацию цифрового пина на большой скорости, нарабатывая процесс медленного затухания.

Чтобы подключить к Ардуино светодиод, необходимо соединить его более длинную ногу (анод) с цифровым пином №9, который расположен на плате, посредством резистора 220 Ом. Затем, более укороченную ногу светодиода (катод с отрицательным зарядом) стоит направить к земле.

Источник: http://led-svetodiody.ru/info/plavnoe-vklyucheniya-svetodiodov

Плавное включение и выключение светодиодов: схемы розжига

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях.

Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками.

В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов.

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Скорость разряда, а тем самым и скорость плавного затухания светодиода, может регулироваться номиналом сопротивления R3. Поэкспериментируйте, чтобы понять, как номинал влияет на быстроту розжига и затухания LED. Принцип следующий – выше сопротивление, медленнее затухание, и наоборот.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Широкое применение схемы нашли в тех местах, где одна часть контактов замыкается по минусу, а другая по плюсу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Для углубленного понимания всего происходящего в рассмотренных вариантах предлагаем посмотреть интересное видео, автор которого, при помощи программы проектировки электронных схем, постепенно показывает принцип работы плавного включения и выключения светодиода на разных вариантах. Внимательно посмотрев видео, Вы поймете почему обязательно нужно использовать транзистор.

Вывод

Рассмотренные решения являются самыми популярными и востребованными.

В сети интернет, на формуах ведутся большие дискуссии по поводу простоты и малой функциональности данных схем, однако практика показала, что в быту их функционала хватает сполна.

Большой плюс рассмотренных решений включения и выключения светодиодов – это простота изготовления и низкая себестоимость. Для разработки готового решения уйдет не более 3-7 часов.

Источник: http://ledno.ru/svetodiody/samodelki/plavnoe-vklyuchenie-vyklyuchenie-led.html

Урок 3 — плавное включение светодиода на Arduino с помощью ШИМ (PWM)

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

В первом уроке Мигаемвстроенным на плату Arduino светодиодоммы рассмотрели как можно мигать встроенным светодиодом.

Но кроме мигания можно плавно включать и выключать светодиод с подошью ШИМ или в английском PWM (Pulse-Width Modulation) широтно-импульсная модуляция .

Что такое ШИМ рассказывать не буду. В интернете очень много информации по данной теме.

Для урока нам понадобиться:

Подключение будет аналогично второму уроку: Мигаем светодиодом на Arduino. Только Переключим на пин на котором есть ШИМ. Их иногда обозначают волнистой чертой “~” или обводят кружочками или ещё как-то выделяют среди прочих. На Arduino Uno это “~”.

Подключим к з пину, у нас получится следующая схема подключения.

Так как ШИМ в Arduino 8 bit соответственно в программе мы можем использовать любое значение от 0 до 225.

Подправим код:

int led_pin=3; // пин подключения int brightness = 0; // яркость светодиода int fadeAmount = 3; // шаг изменения яркости void setup() { } void loop() { analogWrite(led_pin, brightness); // устанавливаем значение brightness = brightness + fadeAmount; // прибавляем шаг изменения яркости, которая установится в следующем цикле if (brightness == 0|| brightness == 255) { // Условие fadeAmount = -fadeAmount ; // Меняем знак // delay(500); // ожидаем 1/2 секунды } delay(50); // ожидаем 1/20 секунды }

int – означать что у нас переменные целочисленные от -32 768 до 32 767.

Переменная brightness нужна нам, чтобы задать первоначальное свечение светодиода и для увлечение в цикле.

Переменная fadeAmount устонавливает шага изменения яркости. Данная переменная должна быть кратная 255, для данной программы. Можно конечно проверить, чтобы при выполнении цикла наше значение не выходила за пределы 255. Но мы пока этого делать не умеем.

analogWrite(led_pin, brightness);

Для работы с ШИМ инициализируем выход как аналоговый analogWrite().

brightness = brightness + fadeAmount;

В данной строчке мы складываем две переменные. Так как все что находиться внутри функции loop() обрабатывается в непрерывном цикли. Благодаря этому сложение будет происходить при каждом проходе по циклу.

Для того чтобы переменная brightness не выходила за границы ШИМ (от 0 до 255 ) сделаем проверку:

if (brightness == 0 || brightness == 255) Оператор If означает логическое ЕСЛИ. || логическое ИЛИ. == – это символ равенства двух значений. В нашем случае двух целочисленных значений.

Прочитаем строчку: ЕСЛИ переменная brightness равная 0 ИЛИ равны 255 то выполняем действия в {}.

В {} у нас вырождение fadeAmount = -fadeAmount ; Данное вырождение меняет знак на противоположный.

И так что же у нас происходит в цикле :

brightness увеличивается до тех пор пока не станет равным 255. После чего переменная fadeAmount меняет знак на минус а brightness начинает уменьшаться. После того как brightness становиться равным 0. fadeAmount снова меняет знак на положительный. И так все повторяется пока мы не отключим питание.

Следующий урок: Сигнал SOS с помощью Arduino и одного светодиода

</soan><span id=”selection-marker-1″ class=”redactor-selection-marker” data-verified=”redactor”></span>

Если у вас чего то нет для выполнения данного урока, Вы можете посмотреть в каталоге. Там собранные комплектующими от проверенных продавцов по самым низким ценам.

Источник: https://portal-pk.ru/news/44-urok-3-%E2%80%94-plavnoe-vklyuchenie-svetodioda-na-arduino-s-pomoshchyu.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.