ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Содержание

Чем отличается понижающий преобразователь от повышающего? Часть 1

ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Журнал РАДИОЛОЦМАН, январь 2019

Александр Русу, Одесса, Украина

Импульсные преобразователи понижающего и повышающего типов имеют приблизительно одинаковое количество компонентов, массу, габариты и стоимость, однако выполняют диаметрально противоположные задачи: понижающая схема уменьшает, а повышающая увеличивает уровень входного напряжения, причем обратные функции, соответственно, увеличения или уменьшения напряжения для них недоступны. Таким образом, повышающие и понижающие преобразователи даже теоретически не могут быть взаимозаменяемыми. Однако на практике бывают случаи, когда для решения одной и той же задачи можно с успехом использовать как одну, так и другую схему. И тогда возникает один вопрос: насколько они «одинаковы»? Если ли какое-то условие, определяющее выбор конкретной схемы?

Рассмотрим один из практических примеров.

До массового распространения жидкокристаллических и светодиодных дисплеев фактически единственными устройствами, позволяющими полноценно отобразить графическую информацию, были электронно-лучевые трубки (кинескопы), на основе которых в свое время было создано не одно поколение телевизоров, компьютерных мониторов и прочего оборудования.

Одним из наиболее сложных и специфичных узлов данной техники был блок горизонтальной (строчной) развертки, формирующий ток в катушках отклоняющей системы, а заодно и целый набор питающих напряжений, необходимых в первую очередь для работы кинескопа.

Не вдаваясь в подробности работы этого узла, отметим, что в большинстве схемных решений для его работы требовалось регулировать напряжение питания – только так можно было обеспечить поддержку нескольких режимов работы и точную стабилизацию геометрических размеров изображения.

Например, в компьютерных мониторах NEC MultiSync V720 на основе шасси N0701 при частоте 31 кГц, соответствующей разрешению 640 × 480 элементов и частоте обновления 60 Гц, напряжение питания выходного каскада строчной развертки должно было равняться 62 В, а при 69 кГц (1024 × 768, 85 Гц) оно увеличивалось практически в три раза – до 160 В [1]. При других же разрешениях и частотах обновления экрана напряжение питания принимало некоторое промежуточное значение в диапазоне от 62 В до 160 В, величина которого определялась фактической частотой строчной развертки.

Но как обеспечить регулировку питающего напряжения в широких пределах? Изменять режимы работы основного источника питания далеко – не самая лучшая идея, поскольку кроме выходного каскада строчной развертки в мониторах или телевизорах есть еще множество других узлов, требующих стабильного питания. В свое время инженеры решали эту задачу двумя способами.

Например, в упомянутом выше мониторе MultiSync V720 выходной каскад строчной развертки питался от источника с напряжением 45 В через повышающий преобразователь, увеличивающий напряжение до нужного уровня «классическим» методом ШИМ-регулирования.

Второй способ, который также широко использовался в мониторах, например, компании Samsung, заключался в питании этого узла от источника с повышенным напряжением, но через понижающую схему.

Рисунок 1.Два варианта питания одной и той же нагрузки.

Так какой же подход использовать, если результат в обоих случаях одинаков? Ответ на этот вопрос и будет получен в данной статье, в которой рассмотрены два варианта решения одной и той же задачи.

Чтобы не привязываться к схемотехнике, наверное, уже окончательно устаревших мониторов на основе электронно-лучевой трубки, сформулируем задачу в общем и, для упрощения расчетов, идеализированном виде. Пусть нам необходимо обеспечить работу нагрузки мощностью 10 Вт, требующей напряжения питания от 10 В до 30 В от двух разных источников с напряжением, соответственно, 10 В и 30 В (Рисунок 1).

Примером такой нагрузки может быть все что угодно, например, светодиодный светильник, электродвигатель или другое оборудование, минимальное напряжение питания которого должно иметь ненулевое значение.

Определение режимов работы силовой части

Напряжения и токи в элементах преобразователя во многом определяются параметрами обмоток и режимом работы магнитопровода накопительного дросселя L1, которые, в свою очередь зависят от схемотехники силовой части и соотношения напряжений на входе и выходе.

Особенностями понижающей и повышающей схем является частичное преобразование электрической энергии, при котором через магнитное поле дросселя передается только некоторая часть мощности нагрузки [3].

В рассматриваемом случае величина преобразуемой мощности РИР для понижающего преобразователя равна:

(1)

а для повышающего:

(2)

где

РВЫХ = 10 Вт выходная мощность преобразователя (мощность, потребляемая нагрузкой);
UВХ, UВЫХ – соответственно, напряжение на входе и выходе.

Исходя из результатов расчетов, оба преобразователя имеют одинаковое максимальное значение преобразуемой мощности (РИР = 6.7 Вт), следовательно, согласно [3, 4], их дроссели могут быть реализованы на одинаковых магнитопроводах.

Согласно [5], минимальные размеры магнитопровода обеспечиваются при однополярной форме магнитной индукции с максимально возможным размахом.

Это соответствует граничному режиму работы электрической части, при котором ток дросселя в момент открытия транзистора VT1 достигает нулевого значения [5].

Пусть обе схемы при максимальном значении преобразуемой мощности РИР работают в граничном режиме. В этом случае, соотношение длительностей первого t1 и второго t2 этапов преобразования можно определить на основе уравнения [2]:
(3)

где

UL1, UL2 – напряжения,
а N1, N2 – количество активных витков обмоток дросселя, соответственно, на первом и втором этапах.

Поскольку соотношение напряжений на входе и выходе находится в диапазоне 0.1 < UВЫХ/UВХ < 10, то, согласно [2], количество витков на обоих этапах может быть одинаковым. Следовательно, и для повышающей, и для понижающей схемы можно использовать дроссель с одной обмоткой. В этом случае N2/N1 = 1.

Для понижающего преобразователя напряжение на обмотке дросселя на первом этапе преобразования равно разности напряжений на входе и выходе (UL1 = UВХ – UВЫХ), а на втором – выходному напряжению (UL2 = UВЫХ).

Для повышающей схемы ситуация противоположная: на первом этапе к обмотке дросселя L1 приложено полное входное напряжение (UL1 = UВХ), а на втором – разность входного и выходного напряжений (UL2 = UВЫХ – UВХ).

В этом случае при максимальном значении преобразуемой мощности:

(4)

При РИР = 0 Вт, когда UВХ = UВЫХ, соотношение длительностей этапов преобразования равно:

(5)

Анализ формулы (5) показывает, что для понижающего преобразователя соотношение t1/t2 будет равно полученным значениям при t1 → ∞ и t2 → 0, то есть, когда транзистор VT1 постоянно открыт, и ток через диод VD1 не протекает, а для повышающего – наоборот: при t1 → 0 и t2 → ∞, то есть, когда транзистор VT1 постоянно закрыт.

Традиционно при проектировании импульсных преобразователей используют коэффициент заполнения импульсов управления (Duty Cycle – D), равный отношению длительностей первого этапа t1, к периоду преобразования T (D = t1/T). Конкретная частота переключения, а, следовательно, и длительность периода T, нам не заданы.

Однако, предполагая, что схемы работают на одной частоте, диапазон изменения коэффициента заполнения D можно определить, используя полученные в формулах (4) и (5) значения (t1/t2), и то обстоятельство, что при работе в граничном режиме период преобразования равен сумме длительностей обоих этапов (Т = t1 + t2):

(6)

Для понижающего преобразователя:

(7)

а для повышающего:

(8)

Определение параметров тока дросселя

Выходная мощность преобразователя постоянна (РВЫХ = 10 Вт) и не зависит от напряжения питания. Определим среднее значение тока, потребляемого нагрузкой при разных напряжениях питания:

(9)

В общем случае к параметрам тока дросселя относятся его минимальное значение IMIN (в начале первого этапа) и размах пульсаций IM. Для понижающего преобразователя ток в нагрузку поступает на обоих этапах преобразования. В этом случае среднее значение выходного тока IВЫХ равно среднему току дросселя [6]:

(10)

При работе в граничном режиме и преобразовании максимальной мощности (когда UВЫХ = 10 В) минимальное значение тока дросселя равно нулю (IMIN = 0), что позволяет определить размах пульсаций IM, который, к тому же, равен его максимальному значению:

(11)

При максимальном выходном напряжении (UВЫХ = 30 В) транзистор VT1 постоянно открыт, и пульсации тока в дросселе отсутствуют (IM = 0). В этом случае среднее, минимальное и максимальное значения тока дросселя равны току нагрузки:

(12)

Для повышающего преобразователя ток в нагрузку передается только на втором этапе преобразования, поэтому, согласно [6]:

(13)

Это позволяет определить размах пульсации при максимальном выходном напряжении (UВЫХ = 30 В):

(14)

При минимальном выходном напряжении (UВЫХ = 10 В), так же как и в понижающем преобразователе, дроссель не коммутируется, поэтому средний ток дросселя равен току нагрузки:

(15)
Рисунок 2.Токи дросселя при различных режимах работы.

Таким образом, для обоих преобразователей необходимы дроссели L1 с одинаковыми значениями максимально допустимого тока (Рисунок 2). Поскольку параметры магнитопровода для них тоже одинаковы, то можно смело утверждать, что дроссели повышающего и понижающего преобразователя должны иметь одинаковую индуктивность L, ведь энергетическая емкость дросселя WL определяется формулой:

(16)

Чтобы развеять возможные сомнения, выполним дополнительную проверку. На первом этапе преобразования длительностью t1 к дросселю L1 приложено напряжение UL1, под действием которого, согласно закону Фарадея, его ток должен измениться на величину IM:

(17)

Это позволяет определить требуемое значение индуктивности L:

(18)

Предполагая, что повышающий и понижающий преобразователи будут работать на одной частоте мы, выразив абсолютную длительность первого этапа преобразования через его относительное значение (t1 = DT), можем, используя те же соображения, что и при выводе формул (4) и (5), определить соотношение индуктивностей для понижающего и повышающего преобразователей:

(19)

В формуле (19) индексы «ПОН» и «ПОВ» относятся, соответственно, к понижающему и повышающему преобразователям.

Из формул (11), (14) и (19) теперь становится очевидно, что дроссели повышающего и понижающего преобразователи полностью одинаковы.

Список источников

Окончание

Источник: https://www.rlocman.ru/review/article.html?di=587769

Преобразователи напряжения импульсные

ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии.

Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции.

Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами.

С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Особенности преобразователя напряжения с 12В в 220 В

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Все виды преобразователей напряжения

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства.

Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения.

Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии.

Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее.

Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента.

Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке.

Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс.

Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал.

Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен.

А также падения и всплескам напряжения, которые могут возникнуть в сети.

Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник: https://amperof.ru/elektropribory/preobrazovateli-napryazheniya-impulsnye.html

Dc Dc преобразователь. Устройство и принцип работы основных схем

ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Для питания различной электронной аппаратуры весьма широко используется Dc Dc преобразователь. Применяется он в устройствах вычислительной техники, устройствах связи, различных схемах управления, автоматики и др.

Питание схем с помощью трансформаторных блоков питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке.

Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

Питание схем с помощью Dc Dc преобразователей

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью Dc Dc преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5 В до 5 В (выходное напряжение компьютерного USB).

  Dc Dc преобразователь 1,5 В / 5 В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше.

Классификация Dc Dc преобразователей

Вообще Dc Dc преобразователи можно разделить на несколько групп.

Понижающий, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50 В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий преобразователь иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающий, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5 В на выходе можно получить напряжение до 30 В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальный Dc Dc преобразователь – SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14 В, а требуется получить стабильное напряжение 12 В.

Инвертирующий Dc Dc преобразователь — inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ (операционных усилителей).

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о Dc Dc преобразователях следует хотя бы в общих чертах разобраться с теорией.

Понижающий Dc Dc преобразователь – преобразователь типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

   Функциональная схема чопперного стабилизатора

Входное напряжение U in подается на входной фильтр — конденсатор C in. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока.

Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор.

Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр – LC out, с которого напряжение поступает в нагрузку R н.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной.

Как же происходит понижение напряжения?

Широтно-импульсная модуляция – ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке ниже.

   Импульсы управления

Здесь tи время импульса, транзистор открыт, tп – время паузы, — транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется широтно-импульсной модуляцией ШИМ (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Сейчас вернемся к нашему понижающему конвертеру типа buck, полная схема приведена выше.

В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) ключевой транзистор. Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

   Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе – фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

   Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки.

По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более.

Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Следует заметить, что на самом деле не все так просто, как написано выше: предполагается, что все компоненты идеальные, т.е. включение и выключение происходит без задержек, а активное сопротивление нулевое.

При практическом изготовлении подобных схем приходится учитывать многие нюансы, поскольку очень многое зависит от качества применяемых компонентов и паразитной емкости монтажа.

Только про такую простую деталь как дроссель (ну, просто моток провода!) можно написать еще не одну статью.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающий Dc Dc преобразователь – преобразователь типа boost 

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

   Функциональная схема повышающего преобразователя

Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальный Dc Dc преобразователь – SEPIC 

SEPIC (single-ended primary-inductor converter) или преобразователь с несимметрично нагруженной первичной индуктивностью.

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

   Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на предыдущем рисунке, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке ниже.

   Принципиальная схема преобразователя SEPIC

Ниже показан внешний вид платы с обозначением основных элементов.

   Внешний вид преобразователя SEPIC

Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35 В. При этом выходное напряжение может настраиваться в пределах 1,23…32 В. Рабочая частота преобразователя 500 КГц. При незначительных размерах 50 x 25 x 12 мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3 А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10 В, то выходной ток не может быть выше 2,5 А (25 Вт). При выходном напряжении 5 В и максимальном токе 3 А мощность составит всего 15 Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйти за пределы допустимого тока.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/radioelektronika/dc-dc-preobrazovatel

Преобразователи напряжения. Виды и устройство. Работа

ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения.

Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).

  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:

  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.

  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.

  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.

  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.

  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.

  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

Виды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:

  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный:

  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.

Преобразователи переменного напряжения:

  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.

Особенности

  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми.

    При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.

  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора.

    Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение.

    Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.

  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.

  • Для питания различных цепей;

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

К достоинствам преобразователей напряжения можно отнести:

  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.

  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения.

    Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.

  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность.

    КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.

  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.

  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/preobrazovateli-napriazheniia/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.