Причины потерь электроэнергии на больших расстояниях
Передача электроэнергии на расстояние
Весь быт современного человека тесно связан с электроэнергией. От неё работает всё: начиная от зарядных устройств телефонов и заканчивая аппаратами искусственной вентиляции лёгких. Поэтому электроэнергия должна быть легкодоступна в каждом уголке планеты.
Высокое напряжение как способ уменьшения потерь
Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями.
Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы.
Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.
Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:
- применение высокотемпературных сверхпроводников;
- увеличение сечения кабелей и проводов ЛЭП;
- повышение напряжения в линиях передачи.
За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.
Классификация линий электропередач
Беспроводная передача электроэнергии
Существует множество разновидностей ЛЭП. Каждый из видов заточен под свои определённые нужды и задачи. В соответствии с этим, ПУЭ регламентирует следующую классификацию воздушных линий электропередач.
По классу напряжению ЛЭП бывают:
- низковольтные, до 1 кВ;
- высоковольтные, свыше 1 кВ.
По назначению:
- Межсистемные линии с напряжением от 500 кВ и выше;
- Магистральные, 220-500 кВ;
- Распределительные, 110-220 кВ;
- Линии 35 кВ для питания сельхоз потребителей;
- ЛЭП 1-20 кВ, используемые в пределах одного населённого пункта.
Род электрического тока в ЛЭП подразделяются на:
- переменный (практически все линии);
- постоянный ток (встречается редко, в основном 3,3 кВ контактной сети железной дороги).
Способы передачи электроэнергии
Знакомство с пиковыми и другими зонами тарификации электроэнергии
Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.
Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.
Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.
Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.
Схема передачи энергии от электростанции до потребителя
Что такое коммерческий учет электроэнергии
электростанция (1) вырабатывает напряжение порядка 10-12 кВ. Затем оно повышается с помощью трансформатора (2) до более высокого уровня: 35, 110, 220, 400, 500 или 1150 кВ.
После по кабельной или воздушной линии (3) энергия передаётся на расстояния от единиц до тысяч километров и попадает на понижающую подстанцию. На ней также установлен трансформатор (4), который преобразует сотни киловольт снова в 10-12 тысяч вольт. Далее следует ещё один каскад понижения до 380/220 В (5).
Это напряжение является конечным и раздаётся по потребителям (6), т.е. жилым домам, больницам и т.д.
Транспортировка электрической энергии
Трансформаторные подстанции
Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор.
Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию.
На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.
Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.
Пропускная способность линий электропередач
Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.
Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП.
Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия.
Пропускная способность линии тем выше, чем толще её провода.
Потери электроэнергии
Причины потерь при передаче электрической энергии на расстояние кроются в строении вещества. Электрический ток – это направленное движение по проводнику свободных носителей зарядов. В случае с ЛЭП и кабелями их роль играют электроны.
Эти частицы, проходя по сечению провода, неизбежно сталкиваются с окружающими их атомами меди или алюминия и сообщают им часть своей кинетической энергии.
Микрочастицы металла за счёт этого удара становятся подвижнее, что и воспринимается органами чувств человека как повышение температуры.
Количество теплоты Q, выделенной в проводнике за время t и потерянной впустую, вычисляется по закону Джоуля – Ленца. Оно пропорционально квадрату протекающего в проводе тока I и его сопротивлению R:Q = I2Rt.
Дополнительная информация. Потери электричества имеются и в трансформаторе. К самым большим из них относятся затраты энергии на создание вихревых токов в сердечнике и нагрев обмоток.
Передача электричества на дальние расстояния
Если передача электрической энергии осуществляется на дистанции в сотни километров, то используют воздушные линии. Их строительство обходится существенно дешевле, в сравнении с кабельными, укладываемыми под землю.
ЛЭП способны объединять в общую сеть соседние страны. Помимо этого, они проще в эксплуатации, ведь провода находятся под открытым небом.
Этот фактор упрощает осмотр технического состояния линии и позволяет заблаговременно спрогнозировать её неисправности.
Возведение ЛЭП 750 000 вольт
Постоянный ток в качестве альтернативы
Большинство из используемых сегодня в мире линий электропередач работает на переменном токе. Однако имеются исключения. В некоторых случаях применение постоянного тока оказывается более эффективным:
- отпадает необходимость в синхронизации генераторов, работающих в разных энергосистемах;
- сводятся к нулю потери на ёмкостное и индуктивное сопротивления кабеля;
- снижается стоимость линии, т.к. для передачи постоянного тока достаточно всего 2 проводников;
- возможность использования на уже построенных ЛЭП переменного тока, т.е. не нужно возводить новые магистрали;
- снижение электромагнитного излучения, возникающего при смене направления тока.
Дополнительная информация. Большинство домашних электроприборов может работать от постоянного тока. К ним относятся лампочки, интернет роутеры, дрели, обогреватели и многое другое. Переменный ток необходим только для некоторых видов двигателей, которые в быту встречаются крайне редко.
Умение передавать электрический ток на огромные расстояния послужило решающим фактором для развития всего человечества. Однако индустрия не стоит на месте, поэтому сейчас учёные работают над тем, чтобы сделать транспортировку энергии ещё эффективнее и дешевле.
Источник: https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html
Потери электроэнергии в электрических сетях: коэффициент и норматив
Чтобы понять, что представляют собой потери электроэнергии в электрических сетях, потребуется разобраться с самой системой электроснабжения.
Она состоит из ряда конструктивных элементов, каждый из которых в определенных условиях вносит вклад в непроизводительные издержки.
Кроме того, они могут быть связаны с необходимостью удовлетворения собственных потребностей на вспомогательное оборудование подстанций. Из этого следует вывод, что без потерь в электрических цепях обойтись практически невозможно.
Виды и структура
Примерная структура потерь
Потери в электросетях с точки зрения энергосбережения – это разница между отпущенным поставщиком объемом электричества и той энергией, которую по факту получает потребитель. С целью нормирования и подсчета их реальной величины была принята следующая классификация:
- потери технологического характера;
- эксплуатационные (коммерческие) издержки;
- фактические непроизводительные расходы.
Технические потери обусловлены особенностями прокладки линий электроснабжения, а также рассеянием энергии на контактах. Сюда же входит отбор части поставляемой электрической энергии на нужды вспомогательного оборудования. Технологическая составляющая включает расходы в нагрузочных цепях и климатическую компоненту.
Второй фактор – коммерческий – обычно увязывается с такими неустранимыми причинами, как погрешность приборов, измеряющих контролируемые параметры. В нем также учитывается ряд нюансов, касающихся ошибочных снятий показаний по потреблению и хищений энергии.
Проведенные исследования убедительно доказывают, что максимальный уровень издержек приходится на передачу энергии высоковольтными линиями ЛЭП (до 64 процентов).
Коронный разряд на линии ЛЭП
Большую их часть составляют расходы на ионизацию воздуха из-за коронарного разряда (17%). Фактическими называют потери, которые были определены в самом начале – разница между отпущенным продуктом и его потребленным объемом.
При их упрощенном расчете иногда две описанные составляющие просто складываются. Однако на практике техника вычисления этого показателя оказывается несколько иной.
Для его определения применяется проверенная временем методика расчета потерь в проводах с учетом всех остальных компонентов.
Фактическая их величина согласно специальной формуле равна притоку энергии в сеть за минусом следующих составляющих:
- полученный частным потребителем объем;
- перетоки в другие ветви энергосистемы;
- собственные технологические нужды.
Затем полученный результат делится на поступающий в сеть объем электроэнергии минус потребление в нагрузках, где потери отсутствуют, минус перетоки и собственные нужды. На завершающем этапе расчетной операции итоговая цифра умножается на 100%. Если требуется получить результат в абсолютных значениях, при использовании этого метода ограничиваются расчетами одного только числителя.
Определение нагрузки, обходящейся без непроизводительных расходов (перетоки)
В рассмотренной ранее формуле введено понятие нагрузки без потерь, определяемой посредством приборов коммерческого учета, устанавливаемых на подстанциях.
Любое предприятие или государственная организация самостоятельно оплачивают потери в электрической сети, фиксируемые отдельным счетчиком в точке подключения. «Перетоки» также относят к категории расходов энергии без потерь (так удобнее вести расчет).
Под ними понимается та ее часть, которая из одной энергосистемы перенаправляется в другую. Для учета этих объемов также применяются отдельные измерительные приборы.
Собственные нужды
Потери в силовых трансформаторах подстанции
Собственные нужды обычно относят к особой категории, классифицируемой как фактические потери. В этом показателе принято фиксировать затраты на поддержание работоспособности следующих объектов:
- подстанций с установленными в них трансформаторами;
- административных строений, вспомогательных зданий и т. п.
Каждая из статей входит в итоговую сумму в пропорции, нормируемой для данного вида потребителя.
Самый весомый вклад вносят районные подстанции, поскольку в них размещается основное обслуживающее оборудование. Оно обеспечивает нормальные режимы эксплуатации узлов, ответственных за преобразование электроэнергии, а также ее доставку к потребителю.
Зарядное помещение для тяговых АКБ
Для фиксации величины этих затрат на подстанциях устанавливаются собственные приборы учета.
Список потребителей, традиционно относящихся к рассматриваемой категории:
- вентиляционные системы, гарантирующие полноценное охлаждение комплекта трансформаторного оборудования;
- системы отопления и вентиляции для технологических помещений, а также смонтированные в них осветительные сети;
- приборы освещения, располагающиеся на прилегающих к подстанциям секторах и территориях;
- оборудование помещений для зарядки АКБ;
- системы обогрева установок наружного размещения (для управления воздушными коммутаторами, в частности);
- компрессоры и вспомогательные механизмы.
К этому же типу оборудования относят приспособления и инструменты, используемые для проведения ремонтных работ, а также при восстановлении вспомогательной аппаратуры.
Коммерческая составляющая
Отсутствие контроля работы приборов учета приводят к неучтенным хищениям электроэнергии
В первую очередь эта составляющая касается характеристик приборов учета, принадлежащих конечным потребителям (их погрешности, в частности).
Для снижения этого типа потерь разработан ряд конкретных мер, успешно применяемых на практике. К категории коммерческих относят не только ошибки при выписывании счетов конкретному потребителю, но и неучтенные хищения электроэнергии.
В первом случае они чаще всего возникают по следующим причинам:
- в договоре на поставку электроэнергии приведена неполная или не совсем корректная информация о потребителе и балансовой принадлежности закрепленного за ним объекта;
- ошибка в указании выбранного тарифа;
- отсутствие контроля работы приборов учета (этот случай характерен для садовых кооперативов и СНТ, в частности);
- неточности, возникающие при корректировке выписанных ранее счетов и т. п.
Характерные ошибки, вызванные спорным определением границ балансовой принадлежности объекта, решаются в порядке, установленном законодательством РФ.
Проблема хищений с трудом решается во всех цивилизованных странах. Эти противозаконные действия постоянно пресекаются соответствующими органами, дела по ним направляются в местные судебные инстанции. Пик таких хищений традиционно приходится на зимнюю пору и именно в тех регионах страны, где бывают проблемы с централизованным теплоснабжением.
Это только подтверждает взаимосвязанность коммерческих составляющих издержек по каждой из категорий энергоресурсов.
Основные причины утечек электроэнергии
Большая часть энергии, произведенная трансформатором, рассеивается
Грамотный подход к расчету потерь электроэнергии подразумевает учет причин, по которым они возникают. При исследовании проблемы следует разделять источники непроизводительных расходов в соответствии с уже знакомой классификацией. Начать следует с технической составляющей, которую обычно увязывают с такими элементами:
- трансформаторы;
- высоковольтный кабель или воздушная линия;
- обслуживающее линию оборудование.
У любого силового трансформатора имеется несколько обмоток, каркас которых крепится на ферромагнитном сердечнике. В нем и теряется большая часть электроэнергии, трансформируемой в тепло (оно затем просто рассеивается в пространство).
На величину потерь в различных элементах электросети также влияет режим ее работы: холостой ход или «под нагрузкой». В первом случае они оцениваются как постоянные, не зависящие от внутренних и сторонних факторов.
При подключении потребителя уровень потерь зависит от величины нагрузочного тока в цепи, который каждый день меняется. Поэтому для его оценки проводятся статические наблюдения за определенный период (за месяц, например).
Потери в ВВ линиях электропередач образуются при транспортировке энергоносителя из-за утечек, связанных с коронным разрядом, а также из-за нагрева проводников.К категории обслуживающего оборудования относят установки и приборы, участвующие в генерации, транспортировке, а также в учете и потреблении отпускаемой энергии.
Величины сверхнормативных потерь этой категории в основном не меняются со временем или же учитываются посредством электросчетчиков.
Понятие нормативного показателя
Под этим термином понимается подтвержденная на практике и экономически обоснованная величина потерь за определенный промежуток времени.
При утверждении норматива учитываются все рассмотренные ранее составляющие, для каждой из которых проводится отдельный анализ.
По их результатам вычисляется фактическое (абсолютное) значение и рассматриваются возможные варианты снижения этого показателя.
https://www.youtube.com/watch?v=M4Fa4qrVJ_o
Нормируемое значение не остается все время постоянным – непрерывно корректируется.
Под абсолютными показателями в данном случае понимается разница между переданной потребителю мощностью и технологическими (переменными) потерями. Нормативные значения для последнего параметра вычисляются по соответствующим формулам.
Кто платит за потери электричества
Чтобы определиться с тем, кто должен оплатить непроизводительные расходы электроэнергии в сети, следует учитывать конкретную ситуацию, а также ряд дополнительных критериев. Когда речь заходит о расходах на восполнение технологических потерь, их оплата ложится на плечи потребителей – частных или юридических лиц.
Она учитывается не напрямую, а закладывается в существующие тарифы.
Каждый потребитель при оплате счетов за электричество рассчитывается с сетевой организацией за всевозможные потери в линиях передач и трансформаторах. В случае с коммерческой составляющей за всякое превышение показателя сверх нормируемого значения платить приходится компании, отпускающей энергоресурс клиенту.
Способы снижения потерь
Сократить непроизводительные расходы удается за счет снижения коммерческой и технологической составляющих суммарных потерь. Во втором случае сделать это можно принятием следующих особых мер:
- оптимизация схемных решений и режимов работы электросети;
- изучение статистических данных и выявление узлов максимальных нагрузок;
- снижение суммарной перекачиваемой по сети мощности за счет увеличения реактивной составляющей;
- оптимизация трансформаторных нагрузочных линий;
- обновление оборудования и применение различных подходов к выравниванию нагрузок.
Указанные меры позволяют заметно снизить суммарное потребление и потери и обеспечить высокое качество напряжения в сети (оно не будет «проседать»).
Методика и пример расчета
Известны следующие методики приблизительного подсчета потерь в линиях электропередач:
- оперативные расчеты;
- посуточные вычисления;
- определение максимальных потерь за определенный промежуток времени;
- использование обобщенных данных.
С полной информацией об официально утвержденных методиках определения этого параметра можно ознакомиться в соответствующей нормативной документации.
Расчет потерь в силовом трансформаторе
В качестве примера рассмотрим расчет потерь в фидере высоковольтной линии с трансформатором ТП 6-20/04кВ.
При реализации метода оперативного расчета издержек в зависимости от линейного падения напряжения сначала измеряются величины фазных потенциалов на шинах трансформаторной подстанции в самой удаленной точке при максимальной нагрузке. По результатам проведенных измерений узнается абсолютное и относительное снижение DU в процентах: оно берется по отношению к его среднестатистическому фазному значению на шинах 0,4 кВ ТП 6-20.
Потери энергии W в линии напряжением 0,4 кВ (в процентах от отгрузки электроэнергии в сеть) можно узнать по следующей формуле:
W = 0,7 Kн х DU х t /T, где
- Кн – коэффициент, учитывающий перекос фаз или неравномерность распределения по потребителям;
- U – потери напряжения в нагрузке (в самой удаленной точке линии, то есть по вычисленные максимуму);
- T – время наблюдения (в часах);
- t – величина временной размерности, характеризующая заполнением графика проверки передачи полезной мощности потребителю.
Выбрав значения параметров для конкретного фидера по одной из выложенных в Интернете таблиц (ТП-4) и подставив их в формулу, с помощью калькулятора получим значение 11,4 процента.
Для фидеров других марок искомую величину технологических потерь удается посчитать с помощью тех же таблиц с приведенными в них данными.
В Интернете широко представлены самые различные методы онлайн расчетов, которыми при необходимости может воспользоваться любой желающий.
Источник: https://StrojDvor.ru/elektrosnabzhenie/raschet-poter-elektroenergii-v-elektrosetyax/
Потери электроэнергии в электрических сетях кто платит снт формула
Решение проблемы потерь электроэнергии, возникающих на ЛЭП, силовых трансформаторах в результате некачественной изоляции проводящих частей, использования оборудования с реактивной нагрузкой, хищения энергоносителя, является актуальной во всем мире.
Специалисты в области энергетики постоянно стремятся исправить ситуацию и разрабатывают мероприятия по сведению к минимуму разности между показателями произведенной электроэнергией и учтенной потребителями.
Причины потерь электрической энергии при ее транспортировке
Регулирование и учет всех видов потерь электроэнергии осуществляется на государственном уровне при помощи принятых законодательных актов.
Разница в напряжении, варьирующегося в пределах 220 В- 380 В относится к одной из причин создавшейся ситуации.
Для обеспечения таких показателей при транспортировке напрямую от генераторов электростанций до конечного потребителя сотрудникам энергетических служб необходимо прокладывать сети с проводами большого диаметра.
Такая задача является невыполнимой. Толстые провода, сечение которых будет соответствовать параметрам напряжения электрической энергии, соответствующей пожеланиям потребителей, невозможно монтировать на ЛЭП.
Укладка магистралей под землей относится к экономически не выгодным и не рациональным мероприятиям. Большой вес проводов не позволяет проводить электромонтажные работы без риска возникновения аварийных ситуаций и угрозы жизни работников.
Для предотвращения потерь электроэнергии по этой причине было принято решение об использовании высоковольтных линий электропередач, способных транспортировать электрический ток небольшой величины на фоне повышенного напряжения, достигающего значений до 10000 Вольт. В такой ситуации отпадает необходимость монтажа проводов с большим сечением.
Подробную информацию по законодательным актам вы сможете без труда найти в интернете.
Следующей причиной, обуславливающей потери энергетических ресурсов во время их транспортировки к потребителю, является недостаточно эффективная работа трансформаторов. Их установка вызвана необходимостью преобразования высокого напряжения и приведения его к значениям, используемых в распределительных сетях.
Плохой контакт проводников, увеличение их сопротивления со временем усугубляют ситуацию и также становятся факторами, которые обуславливают потери электрической энергии. В их список также необходимо внести повышенную влажность воздуха, вызывающей утечку тока на корону, а также изоляцию проводов, несоответствующую требованиям нормативной документации.
После доставки производителем энергии в организацию, занимающейся ее распределением между потребителями, происходит преобразование полученного высокого напряжения до значений 6-10 кВ. Но это еще не конечный результат.
Снова необходима ступенчатая трансформация напряжения до цифры 0,4 кВ, а затем до значений, нужных обычным потребителям. Они варьируются в пределах 220 В -380 В. На этом этапе функционирования трансформаторов снова происходит утечка энергии. Каждая модель агрегатов отличается КПД и допустимой на него нагрузкой.При мощности потребления, которая будет больше или меньше расчетных ее значений, поставщикам снова не удастся избежать энергетических потерь.
К еще одному негативному моменту при транспортировке энергии относится несоответствие эксплуатационных характеристик используемой модели трансформатора, предназначенного для снижения напряжения в сети, величиной 6-10 кВ до 220 В и потребляемой потребителями мощности.
Такая ситуация приводит к выходу со строя преобразующего устройства и отсутствию возможности получить необходимые параметры электрического тока на выходе. Снижение напряжения приводит к сбою в работе бытовых приборов и увеличенному расходу энергии. И тогда снова фиксируются ее потери.
Разработка мероприятий по устранению таких причин поможет исправить такую ситуацию. Появится возможность свести потери во время ее транспортировки к конечному потребителю к минимуму.
Утечка электрической энергии в домашних условиях
К причинам потерь энергии после прохождения прибора учета конечного потребителя относятся:
- излишний расход тока при нагреве проводников, возникающего в случае превышения расчетных параметров потребления электроэнергии;
- отсутствие качественных контактов в розетках, рубильниках, выключателях, патронах для установки ламп, обеспечивающих искусственную освещенность помещений и других приборах коммутации;
- емкостной и индуктивный характер нагрузки на распределительную сеть конечного потребителя;
- использование устаревших моделей бытовой техники, потребляющих большое количество электроэнергии.
Мероприятия по снижению энергопотерь в домашних условиях
В перечень мероприятий по устранению потерь энергии в домах, квартирах внесены:
- Прокладка электрической проводки, соответствующей потребляемой мощности, позволит исключить энергопотери, предупредить изменение параметров изоляции, лишний ее расход на нагрев проводников. Игнорирование требований нормативной документации при обустройстве кабельных квартирных становится причиной появления очагов возгорания в помещениях.
- Во избежание плохих контактов в коммутационных аппаратах рекомендуется использовать изделия при монтаже квартирных электрических сетей с элементами, устойчивыми к процессу окисления, воздействию влаги и температурных перепадов. Кроме этого, в каждом контакте должно присутствовать хорошее прижатие полюсов между собой.
- Для снятия реактивной нагрузки, которая является очередной причиной энергопотерь, возникает при работе электрических приборов и увеличивает расход активной составляющей электрической энергии, необходимо использовать специальные устройства. Они называются установками компенсации реактивной мощности. Их применение позволит уменьшить энергопотери, снизить напряжение на различных участках электросети и суммы денежных средств на оплату использованного количества тока.
- Совершенствование осветительных систем и замена ламп накаливания на светодиодные аналоги также относится к доступному всем слоям населения мероприятию по предотвращению потерь электроэнергии на уровне конечного потребителя.
- Установка стабилизаторов напряжения также позволит сократить энергопотери в домах и квартирах.
Подробную информацию о методах снижения энергопотерь вы можете почерпнуть из видео ниже:
Заключение
Использование таких способов снижения потребительской мощности позволит не только избежать перерасхода электрической энергии, но и сэкономить семейный бюджет, часть из которого расходуется на оплату коммунальных услуг.
Источник: https://Web-electric.ru/prichiny-poter-elektroenergii-na-bolshih-rasstoyaniyah
Потери электроэнергии в электрических сетях: виды, причины, расчет
Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня.
Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения.
Собранная в статье информация описывает многие аспекты этой непростой задачи.
Виды и структура потерь
Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:
- Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
- Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
- Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.
Ниже представлен среднестатистический график потерь типовой электрокомпании.
Примерная структура потерь
Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.
Коронный разряд на изоляторе ЛЭП
Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Потери в силовых трансформаторах подстанций
Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
Расходы на поддержку работы подстанций
К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:
- системы вентиляции и охлаждения трансформаторного оборудования;
- отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
- освещение прилегающих к подстанциям территорий;
- зарядное оборудование АКБ;
- оперативные цепи и системы контроля и управления;
- системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
- различные виды компрессорного оборудования;
- вспомогательные механизмы;
- оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.
Понятие норматива потерь
Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно.
По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь.
То есть, нормативы не статичны, а регулярно пересматриваются.
Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.
Кто платит за потери электричества?
Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.
Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.
Способы уменьшения потерь в электрических сетях
Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:
- Оптимизация схемы и режима работы электросети.
- Исследование статической устойчивости и выделение мощных узлов нагрузки.
- Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
- Оптимизация нагрузки трансформаторов.
- Модернизация оборудования.
- Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.
Уменьшить коммерческие затраты можно следующим образом:
- регулярный поиск несанкционированных подключений;
- создание или расширение подразделений, осуществляющих контроль;
- проверка показаний;
- автоматизация сбора и обработки данных.
Методика и пример расчета потерь электроэнергии
На практике применяют следующие методики для определения потерь:
- проведение оперативных вычислений;
- суточный критерий;
- вычисление средних нагрузок;
- анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
- обращение к обобщенным данным.
Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.
В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.
Расчет потерь в силовом трансформаторе
Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.
Параметры TM 630/6/0,4
Теперь переходим к расчету.
Итоги расчета
Источник: https://www.asutpp.ru/poteri-jelektrojenergii-v-jelektricheskih-setjah.html