РЕЗИСТОРЫ

Содержание

Резистор простым языком: что это такое, устройство, принцип работы, виды

РЕЗИСТОРЫ

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элементприменяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другиематериалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I  – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Рис. 5. Принцип работы

Виды

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов)   – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

  • проволочные резисторы (рис. 6);
  • композиционные;
  • металлоплёночные (рис. 7);
  • металлооксидные (характеризуются стабильностью параметров);
  • углеродные (угольный резистор);
  • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

Рис. 6. Проволочные резисторы Рис. 7. Постоянные плёночные SMD компоненты

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

Винтегральных монокристаллических микросхемах методом трафаретной печати илиспособом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные исверхпрецизионные (высокоточные детали с допуском отклонений параметров от0,001% до 1%);
  • высокоомные (отдесятков МОм до нескольких Том);
  • высокочастотные, способныеработать с частотами до сотен МГц;
  • высоковольтные, срабочим напряжением, достигающим десятков кВ.

Можно классифицировать деталии по другим признакам, например по типу защиты от влаги или по способу монтажа:печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допускотклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 –  ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Рис. 8. Цветовая маркировка

Еслина корпусе присутствует 3 кольца, то первые два обозначают величинусопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Еслина корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущемпримере, а четвёртое кольцо указывает на величину отклонения.

Пятьколец: первые 3 указывают величину сопротивления, на четвёртой позиции –множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×106 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Источник: https://www.asutpp.ru/chto-takoe-rezistor.html

Резистор – основные параметры, расшифровка маркировки и современные виды устройства (Инструкция + таблица)

РЕЗИСТОРЫ

Каждое электрическое или электронное устройство содержит эти радиоэлектронные компоненты нормированной проводимости. Предназначены для создания препятствия прохождению тока в цепи при последовательном включении, регулировке или контролю токов и напряжений в электрической схеме.

Номенклатура моделей велика и нелегко определиться при выборе необходимой детали. Какова область применения резисторов, как определить номинал и мощность, сделать простой расчет – на подобные вопросы ответит эта статья.

Конструкция и свойства

Токопроводящий материал нанесен на диэлектрический каркас с выводами подключения к схеме.

По использованию материалов при изготовлении базисные типы резисторов разделились на:

  • Проволочные, использующие проволоку металлов с тщательно подобранной удельной проводимостью;
  • Непроволочные, которые делятся на тонкопленочные, с использованием металлоокислов и металлодиэлектриков, углеродистых и боруглеродистых соединений; толстопленочные, с резистом на основе проводящих пластмасс и лакопленок, кермитных соединений; объемные, с органическим или неорганическим диэлектриком.
  • Металлофольговые.

Конструктивно отличаются изделия для навесного и печатного монтажа от миниатюрных интегральных деталей модулей и микросхем.

Экстремальные условия эксплуатации и использования электронного оборудования требуют вакуумных, неизолированных, изолированных или герметизированных элементов технологических модулей и приборов.

Некоторые виды аппаратов требуют использования высокочастотных, высоковольтных или прецизионных компонентов.

Классификация по условиям эксплуатации

По особенностям применения и использования виды резисторов делятся на группы.

Постоянные

Сопротивление неизменное с допустимой нормированной погрешностью и соответствует норме. На электрической схеме изображаются прямоугольником со сторонами 10х4 мм. От центра узкой стороны изображаются линии выводов. Рядом с изображением ставят литеру «R» с порядковым номером корпуса по схеме. Тут же проставляют величину номинала.

Менее килоома отражается числом без указания единиц измерения, например: 33 = 33 Ом. Диапазон килоом-мегом принято обозначать литерой «К»(4,7К = 4,7 кОм). «М» применяется при сопротивлении мегом и выше (5,6М = 5,6 мОм).

Внутрь прямоугольника вписывается рассеивание. В импортной технической документации часто изображается в виде зигзагообразной линии соединяющей выводы.

Переменные и подстроечные

Компоненты переменного потенциометра оснащены тремя и более выводами, и механизмом перемещения ползунка – токосъемника. Диапазон изменения простирается от нуля до максимума, ограниченного установленным номиналом.

Изменение характеристик оборудования в процессе эксплуатации, выглядящее, например, как настройка тюнера, регулировка уровня громкости или освещения, выполняется переменным компонентом.

Механизм перемещения ползунка завершается ручкой, позволяющей оперативно проводить регулировку. Если настройка выполняется при наладке и ежедневно меняться не должна, применяются подстроечники. Положение токосъемника в них устанавливается отверткой.

Нелинейные

Устройства автоматики и электронной защиты активно пользуются полупроводниковыми нелинейными приборами, проводимость которых изменяется автоматически при колебаниях внешних факторов окружающей среды. Отрицательный температурный коэффициент у термисторов увеличивает проводимость при повышении температуры и уменьшает при понижении.

Прибор с положительным ТКС называются позистором. У фоторезистора проводимость полупроводникового слоя возрастает при увеличении освещенности в видимом, инфракрасном или ультрафиолетовом спектре.

Варисторы способны увеличить проводимость при возрастании приложенного к нему напряжения

Магниторезисторы реагируют на магнитное поле, а тензисторы фиксируют приложенное к ним механическое усилие.

Параметры и характеристики

Имеется ряд параметров, которые характеризуют компонент в работе и они обязательно учитываются разработчиками при подборе радиодетали. Технические характеристики резисторов имеются в справочной литературе. Остановимся на параметрах, которые написаны на корпусе или их можно определить по внешнему виду.

Номинал

Величины номиналов сопротивлений определены стандартом МЭК 63-63 “Ряды предпочтительных значений для резисторов и конденсаторов”, где значения заключены внутри интервала значений от одного до десяти.

В таблице показаны ряды, значения чисел из которых чаще всего применяются на практике. Требуемый номинал образуется из элемента таблицы с десятичным коэффициентом соответствующей степени.

Допуск

Самая большая разность между действительным значением и номиналом, выраженное в процентах, называется допуском или классом точности. Производитель обязан обеспечить необходимый допуск согласно выбранного ряда предпочтительных значений и привести изделие к необходимому классу точности.

Для ряда Е6 допускается отклонение значения на ±20 %, для Е12 ±10 %, а Е24 допускает неточность при изготовлении не превышающую ±5 %. Нормальную работу большинства схем обеспечивают радиодетали класса 5-10 %. При необходимости использования повышенной точности это указывается на электрической схеме.

Мощность рассеивания

Для каждой модели величину рассеивания тепла нормирована. Если при работе выделяемое тепло превысит рассеивание, произойдет разогрев корпуса с последующим выходом из строя. Разработчики тщательно просчитывают мощности рассеивания тепла применяемых радиоэлементов и указывают значения в технической документации.

Для имеющих достаточные размеры резисторов мощность рассеивания, величина сопротивления и процент допуска указывается на корпусе.

Для самодельного устройства легко посчитать необходимую величину сопротивления и рассеивание.

Например: Светодиод подключается к источнику напряжением Uи=9 В (вольт). Известно, что рабочее напряжение светодиода Uсв=3,7 В, рабочий ток Iсв=5 мА (=0,005 ампера). Светодиод и резистор включились в цепь последовательно, ток одинаков.

Вычисляем напряжение, которое требуется погасить: Uр=Uи-Uсв=8-3,7=4,3 В.

Требуется: Rг=Uр/Iсв=4,3/0,005=870, ближайшее в ряду Е24 равно 910 Ом.

Определяем P=Uр*Iсв=4,3*0,005=0,02 Вт (Ватт)

Правило: Мощность устанавливаемого элемента выбирается в полтора – два раза больше расчетного значения. Подходит 910 Ом с рассеиванием 0,05 Вт.

Буквенно-цифровой код

Элементы с проволочными выводами обозначаются нанесением на поверхность корпуса надписей. Числа обозначают номинал, а буквы соответствуют диапазону измерения. Буквы «E» и «R» для Ом, «K» обозначает килоом, «M» – мегом.

Литера в маркировке выступает децимальной точкой. Например, обозначение 5R8 соответствует сопротивлению 5,8 Ом, 7К8 означает 7,8 кОм, а М59 равно 590 кОм.

Цветовая кодировка

Для малогабаритных компонентов, у которых невозможно прочитать надписи, разработана цветовая маркировка резисторов при помощи цветных полосок.

Ряд цветных полосок сдвинут к краю корпуса, и отсчет начинается с ближней к краю полосы.

Если маркировка содержит пять полос, тогда первые три покажут величину сопротивления в омах, следующая определяет множитель, и последняя обозначает допуск.

Для менее точных приборов применяются четыре полосы. Первые две полосы определяют число, а оставшиеся две определяют множитель и допуск. На некоторых моделях используются шесть полос маркировки.

Шестая полоса соответствует величине термического коэффициента.

Кодировка SMD элементов

На фото резисторов для поверхностного монтажа видно, что малые размеры требуют применения других методов обозначения. Производители ввели три базовых способа нанесения кодировки, объединив изделия в группы по размеру.

Изделия с допуском 2, 5 и 10%. На корпусе цифровое клеймо, например 330, 683, 474. Первые два числа обозначили мантиссу, а третья выступает показателем степени числа 10. Соответственно надпись 330 показывает 33*1=33 Ом, 683 обозначает 68*1000=68 кОм, 473 соответственно 47*10000=470 кОм. В некоторых моделях используется буква «R» как децимальная точка.

Модели типоразмера 0805 и другие с однопроцентным допуском обозначаются по схожему с первой группой принципу: первые три цифры это мантисса, четвертая, множитель – степень основания 10, также допускается использовать литеру «R». Набор 7430 соответствует значению 743 Ом

SMD типоразмера 0603 маркируются комбинацией из двух цифр и буквы, которая определяет степень множителя: A – нулевая степень, B – первая, C – вторая, D – третья, E – четвертая, F – пятая, R – минус первая, S – минус вторая, Z – минус третья степень. Число обозначает код, по которому в таблице EIA-96 отыскивается мантисса.

Например, код 75С. 75 в таблице соответствует 590. Буква «С» указывает на множитель 100. Соответственно 590*100=59 кОм.

Последовательное

Единица измерения сопротивления Ом, напряжения В, мощности Вт.

Присвоив произвольно R1=6; R2=4; R3=3 и предположив, что цепь включена в источник тока постоянного напряжения величиной 9 произведем нехитрые расчеты:

  • Общее цепи: Rобщ= R1+ R2+ R3=6+4+3=13;
  • В цепи: Iобщ=Uи/Rобщ=9/13=0,69;
  • Падение напряжение на каждом элементе: U1=Iобщ*R1=0,69*6= 4,14, U2=2,76, U3=2,07;
  • Мощности: потребляемая цепью Pобщ=Uи*Iобщ=9*0,69=6,21, каждым элементом: P1= U1*Iобщ =4,14*0,69=2,86, P2=U2*Iобщ=Вт, P3=U3*Iобщ=1,43.

Параллельное

Условия для расчета используем из предыдущего пункта: R1=6; R2=4; R3=3, U=9.

Источник: https://electrikmaster.ru/rezistor/

Что такое резистор

РЕЗИСТОРЫ

Резистор – это самый распространенный радиоэлемент во всей радиоэлектронной промышленности.

Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор.

Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа –  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

Переменные резисторы

Переменные резисторы выглядят так:

На схемах обозначаются так:

Соответственно отечественный и зарубежный вариант.

А вот  и их цоколевка (расположение выводов):

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой  тока – реостатом.

Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора.

В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

А вот  так  обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором.  У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения –  это варисторы. 

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а  также от импульсных скачков напряжения. Допустим  у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону.

Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства.

При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

На схемах варисторы обозначаются вот таким образом:

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

На схемах они обозначаются вот таким образом:

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

На схемах тензорезистор выглядит вот так:

Вот анимация работы тензорезистора, позаимствованная с Википедии.

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

При последовательном соединении номиналы резисторов просто тупо суммируются

В этом случае

Резюме

Резистор – это радиокомпонент электронной промышленности, который используется абсолютно во всей радиоэлектронной аппаратуре. Он используется для создания делителей тока,  делителя напряжения, в качестве шунта и, конечно же, для ограничения силы тока.

Резистор обладает активным сопротивлением, в отличие от катушки индуктивности и конденсатора.

По конструктивному исполнению резисторы делятся на два класса: переменные и постоянные.

Существуют также подвиды резисторов – это фоторезисторы, термисторы, варисторы, тензорезисторы  и другие специфические редко используемые подвиды резисторов.

Источник: https://www.RusElectronic.com/resistors/

Что такое резистор? Принцип действия, особенности использования в цепи и как подобрать правильно элемент сопротивления (120 фото)

РЕЗИСТОРЫ

Резистор — это важная составляющая электрической цепи, которая регулирует характеристики тока и напряжения. Этот элемент можно заметить почти во всех электрических приборах.

Резистор выглядит как специальный стержень, внешне защищенный от проведения электричества. Сверху этого стержня нанесен небольшой слой сажи или металла.

Подробнее ознакомиться с внешним видом этого элемента вам помогут фото резисторов на просторах Сети.

К слову, чем меньше толщина поверхностного слоя, тем более сильным является сопротивление. Если сопротивление достаточно мало, тем сильнее ток, поступающий к резистору. Это правило действует и в обратном направлении: чем больше эта характеристика, тем меньше существующий ток.

Разновидности резисторов

Существует несколько основных категорий резисторов, о которых мы расскажем далее.

Постоянные резисторы имеют отличительное свойство: сопротивление в них слабо зависит от внешних условий. Незначительные изменения могут вызвать колебания температуры и резкие перепады работы электричества.

Подстроечный вид отличается наличием специального винта, который позволяет манипулировать током в электрической цепи.

Переменный механизм способен на самостоятельное изменение параметров, которое обычно регулируется с помощью ручки. Примером для этого может послужить регулятор силы излучаемого звука.

Фоторезистор способен менять излучаемое сопротивление, руководствуясь светом. Создается данный типаж из полупроводниковых веществ.

Терморезистор меняет свои параметры согласно колебаниям температуры воздуха. Он выполняет важнейшую функцию: а именно регулирует работу отопительных или охладительных систем по достижению температуры воздуха определенных показателей. Именно поэтому терморезисторы можно часто увидеть в инкубаторах и прочих системах.

Область применения резисторов

Резистор играет важнейшую функцию в работе электрических систем. Например, он способен контролировать распределение, мощность и прочие характеристики электричества в автомобиле. Резистор любого размера, находящийся в отопительной системе позволяет точно регулировать количество подаваемого тепла.

Элемент, расположенный в светодиодах, позволяет регулировать интенсивность освещения. Следовательно, данный механизм позволяет нам более точно регулировать параметры работы техники. В противном случае нам приходилось бы пользоваться заранее установленным режимом работы техники без возможности его изменения.

Мощность рассеивания

Ток и напряжение выделяет определенную энергию, которую поглощает резистор любого размера. В связи с тем, что энергия не поглощается, а рассеивается, резистор называют пассивной составляющей. Это позволяет резистору работать не только в рамках переменного, а и постоянного тока.

Обозначение резисторов

Существует цветная маркировка резисторов, которая позволяет определить способности функционирования постоянного резистора. Приведем ее ниже:

  • Наличие двух скошенных линий подразумевают рассеивание мощности 0,125 Вт.
  • Одна скошенная полоска свидетельствует о мощности рассеивания 0,25 Вт.
  • Одна линия, расположенная горизонтально — рассеивание 0,5 Вт.
  • Одна полоска, размещенная вертикально — 1 Вт.
  • Две полосы, расположенные вертикально — 2 Вт.
  • Еще один способ разметки — соединение скошенных линий по типу латинской буквы V. В таком случае рассеивание составляет 5 Вт.

Последовательность соединения резисторов

Существует несколько самых распространенных способов соединения данного элемента, которые мы укажем далее.

  • Последовательное соединение актуально в случаях, когда механизм обладаем малым номиналом, однако требуется большое сопротивление.
  • Параллельный тип соединения подразумевает мощность сопротивления резистора, равную его общей способности сопротивления.

Заключение

Резистор является важнейших элементов для работы любого электрика. Он позволяет регулировать работу существующей техники, тем самым избавляя от массы ненужных хлопот.

Для того, чтобы подобрать необходимый типаж резистора, необходимо обратить внимание на перечисленные рекомендации, приведенные в нашей статье.

Фото резистора

https://youtu.be/zsmrxsQKJqg Вам понравилась статья? Поделитесь 😉  

Источник: https://electrikexpert.ru/chto-takoe-rezistor/

статьи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность – предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник.

Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин.

Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами.

Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою.

При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов.

Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды.

При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение по ГОСТ 2.

728-74

Описание
Постоянный резистор без указания номинальной мощности рассеивания
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
Постоянный резистор номинальной мощностью рассеивания 1 Вт
Постоянный резистор номинальной мощностью рассеивания 2 Вт
Постоянный резистор номинальной мощностью рассеивания 5 Вт

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Обозначение по ГОСТ 2.728-74Описание
Переменный резистор (реостат).

Источник: https://www.RadioElementy.ru/articles/chto-takoe-rezistor/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.