ROBOTDYN NANO V3 ATMEGA/CH340G

Плата Arduino Nano v 3.0 : распиновка, схемы, драйвер

ROBOTDYN NANO V3 ATMEGA/CH340G

Arduino Nano входит в тройку самых популярных плат ардуино. Она позволяет создавать компактные устройства, использующие тот же контроллер, что и в Arduino Uno.

Название платы нано говорит само за себя – она действительно имеет небольшие размеры при той же функциональности.

  В этой статье мы рассмотрим плату поближе: разберемся с распиновкой платы, узнаем особенности подключения и сделаем краткий обзор шилдов и плат расширения.

Плата Arduino Nano

Nano – одна из самых миниатюрных плат Ардуино. Она является полным аналогом Arduino Uno – так же работает на чипе ATmega328P (хотя можно еще встретить варианты с ATmega168), но с меньшим форм-фактором.

Из-за своих габаритных размеров плата часто используется в проектах, в которых важна компактность. На плате отсутствует вынесенное гнездо внешнего питания, Ардуино работает через USB (miniUSB или microUSB).

В остальном параметры совпадают с моделью Arduino Uno.

Описание платы Arduino Nano

Технические характеристики Arduino Nano:

  • Напряжение питания 5В;
  • Входное питание 7-12В (рекомендованное);
  • Количество цифровых пинов – 14, из них 6 могут использоваться в качестве выходов ШИМ;
  • 8 аналоговых входов;
  • Максимальный ток цифрового выхода 40 мА;
  • Флэш- память 16 Кб или 32 Кб, в зависимости от чипа;
  • ОЗУ 1 Кб или 2 Кб, в зависимости от чипа;
  • EEPROM 512 байт или 1 Кб;
  • Частота 16 МГц;
  • Размеры 19 х 42 мм;
  • Вес 7 г.

Питание платы может осуществляться двумя способами:

  1. Через mini-USB или microUSB при подключении к компьютеру;
  2. Через внешний источник питания, имеющий напряжение 6-20 В с низким уровнем пульсаций.

Стабилизация внешнего источника выполняется при помощи схемы LM1117IMPX-5.0 на 5В. При подключении через кабель от компьютера подключение к стабилизатору происходит через диод Шоттки. Схемы обоих типов питания приведены на рисунке.

При подключении двух источников напряжения плата выбирает с наибольшим питанием.

У платы Arduino Nano имеются такие же ограничения по напряжению и току на входы и выходы платы. Все цифровые и аналоговые контакты работают в диапазоне от 0 до 5 В.

При подаче питания, выходящего за рамки этих значений, напряжение будет ограничиваться защитными диодами. В этом случае сигнал должен подключаться через резистор, чтобы не вывести контроллер из строя.

Наибольшее значение втекающего или вытекающего тока не должно превышать значение 40 мА, а общий ток контактов должен быть не более 200 мА.

На плате имеются 4 светодиода, которые показывают состояние сигнала. Они обозначены как TX, RX, PWR и L. На первых двух светодиод загорается, когда уровень сигнала низкий, и показывает, что сигнал TX или RX активен. Светодиод PWR загорается при напряжении в 5 В и показывает, что подключено питание. Последний светодиод – общего назначения, загорается, когда подается высокий сигнал.

На настоящий момент выпускается несколько видов Arduino Nano. Есть версии 2.X, 3.0., которые отличаются только чипом, на котором они работают. В версии 2.Х. используется чип ATmega168 с меньшим объемом памяти (флэш, энергонезависимой) и пониженной тактовой частотой, версия 3.0. работает на чипе ATmega328.

Где купить Arduino Nano

Традиционно самые низкие цены предлагают зарубежные интернет-магазины. В России цены почти всегда будут выше на 20-200 процентов, но не придется ждать заказа около месяца.

Приведем ссылки на надежных поставщиков Aliexpress:

Распиновка Arduino Nano

Плата Ардуино Нано имеет 14 цифровых контактов, которые помечаются буквой D (цифровой, digital). Контакты используются как входы и выходы, у каждого имеется подтягивающий резистор.

Аналоговые пины обозначаются буквой А и используются как входы. У них отсутствую подтягивающие резисторы, они измеряют поданное на них напряжение и возвращают значение при помощи функции analogRead().

На некоторых цифровых пинах можно увидеть значок ~. Такие контакты можно использовать в качестве выходов ШИМ. Ардуино нано оснащена шестью такими контактами – это пины D3, D5, D6, D9, D10, D11. Для работы с ШИМ выводами используется функция analogWrite().

Описание пинов Ардуино Нано

  • Цифровые входы/выходы: D0-D13.
  • Аналоговые входы/выходы: A0-A7 (10-разрядный АЦП).
  • ШИМ: пины 3, 5, 6, 9, 10, 11.
  • UART : D0 и D1 (TX и RX соответственно).
  • I2C: SDA – A4, SCL -A5.
  • SPI: MOSI – 11, MISO – 12, SCK – 13, SS(10).

Пробежимся по пинам:

  • 0  – TX (передача данных UART), D0.
  • 1 – RX (прием данных UART), D1. RX и TX могут использоваться для связи по последовательному интерфейсу или как обычные порты данных.
  • 3, 29 – сброс.
  • 4, 29 – земля.
  • 5 – D2, прерывание INT0.
  • 6 – D3, прерывание INT1 / ШИМ / AIN0.
  • 7 – A4, счетчик T0 / шина I2C SDA / AIN1. AIN0 и AIN1 – входы для быстродействующего аналогового компаратора.
  • 8 – A5, счетчик T1 / шина I2C SCL / ШИМ.
  • 9 – 16 – порты D6-D13, из которых D6 (9й), D9 (12й), D10 (13й) и D11 (14й) используются как выходы ШИМ. D13 (16й пин) – светодиод. Также D10 – SS, D11 – MOSI, D12 – MISO, D13 – SCK используются для связи по интерфейсу SPI.
  • 18 – AREF, это опорное напряжение для АЦП микроконтроллера.
  • 19 – 26: аналоговые входы A0… A7. Разрядность АЦП 10 бит. A4 (SDA), A5 (SCL) – используются для связи по шине I2C. Для создания используется специальная библиотека Wire.

Микроконтроллеры обладают большими функциональными возможностями, но у них есть один недостаток – это ограниченное, по сраyвению с Arduino Mega, число выводов. Поэтому на этапе составления схемы устройства следует продумать, каким образом можно максимально упростить проект, чтобы сократить число нужных для подключения контактов.

Подключение Arduino Nano

Подключение платы Arduino Nano к компьютеру не представляет особого труда – оно аналогично обычной плате Uno. Единственная сложность может возникнуть при работе с платой на базе чипа ATMEGA 168 – в настройках нужно выбрать сперва плату Nano, а затем нужный вариант процессора.

Установка драйвера для CH340

Микросхема CH340 часто используется в платах Ардуино со встроенным USB-to-Serial преобразователем. Она позволяет уменьшить затраты на производство плат, не влияя на ее работоспособность. При  помощи этого программатора можно легко прошивать платы Ардуино. Для того, чтобы начать работать с этой микросхемой, нужно установить драйвер на компьютер.

Установка выполняется в несколько этапов:

  • Скачивание архива с драйвером для нужной операционной системы. Для Windows, MacOS и Linux загрузить драйверы можно по ссылке в нашей статье про USB UART.
  • Распаковка архива.
  • Поиск файла SETUP.EXE, его запуск.
  • На мониторе появится окно, в котором нужно нажать кнопку Install. Установка драйвера начнется, после чего можно начинать работу со схемой.

 Настройка Arduino IDE

Стандартная среда разработки Arduino IDE используется для работы всех видов Ардуино с компьютером. Чтобы начать работу, нужно сначала скачать Arduino IDE с официального сайта и установить ее. Удобнее скачивать Windows Installer, особенно если среда разработки будет установлена на постоянном рабочем компьютере. Если скачан архив, то его нужно распаковать и запустить файл Arduino.exe.

Как только среда установлена, нужно ее запустить. Для этого нужно подключить к компьютеру саму плату Ардуино через USB. Затем перейти в меню Пуск >> Панель управления >> Диспетчер устройств, найти там Порты COM и LPT. В списке появится установленная плата и указан номер порта, к которому подключается плата.

После этого нужно запустить Arduino IDE, перейти в меню Инструменты >> Порт, и указать порт, к которому присоединена Ардуино.  В меня Инструменты>> Платы нужно выбрать модель подключенной платы, в данном случае Arduino Nano. Если у вас плата Nano версии 2.0, то вам нужно также выбрать вариант процессора в соответствующем меню.

Важно помнить, что если к компьютеру будет подключаться другая плата, настройки снова нужно будет поменять на соответствующее устройство.

Примеры проектов с Arduino Nano

Проектов с использованием платы Нано существует огромное количество.

По идее, в любой проект для Arduino Uno можно совершенно спокойно внести плату Nano и не придется менять современно ничего в коде.

Именно поэтому часто после отладки проекта на “большом и удобном” Uno схему переделывают под нано и используют в рабочем варианте “уменьшенный” контроллер, который легче сделать миниатюрным.

Подключение светодиодов к Arduino Nano

В качестве тестовой программы, проверяющей работу платы, можно использовать мигание светодиодом. На плате имеется встроенный светодиод L, с которым обычно выполняются первые проекты. Но можно подключить и внешний светодиод к выходу D13.

Мы, конечно, не забываем, что светодиод обязательно подключать через резистор, чтобы не сжечь его и не повредить плату. Анод светодиода подключается к резистору, который присоединяется к выходу D13. Катод светодиода – к земле.

Вот пример схемы:

В Arduino IDE есть пример, который включает мигание светодиода. Для этого нужно перейти в меню Файл>>Образцы>>1.  Basics>> Blink и загрузить пример. После выгрузки пода Ардуино будет выполнять программу, мигая светодиодом раз в секунду.

Подключение LCD 1602 к Arduino Nano

Экран LCD 1602 достаточно распространенный, для него существует разнообразные виды шилдов,  но также его можно подключить напрямую к Ардуино. Для подключения дисплея к плате нужны Arduino Nano, макетная плата, экран LCD 1602 и соединительные провода.

Выбор пинов, к которым нужно подключать дисплей, может быть любым. Для примера будет выбрана такая конфигурация: контакт RW с дисплея подключается к земле, 4й контакт дисплея – к А0 на Ардуино, 6-й контакт – к Е (Enable), с 11-го по 14-й подключаются к D4-D7. Экран подключен.

Для того, чтобы началь писать код, нужно подключить библиотеку LiquidCrystal. В ней также имеется тестовый скетч, который позволит проверить работоспособность установки. Код находится по адресу Arduino\libraries\LiquidCrystal\examples\HelloWorld\HelloWorld.ino, в скетче нужно только поменять номера контактов, к которым подключен экран.

Если все подключено правильно, на мониторе загорится надпись.

Подключение nrf24l01 к Arduino Nano

Радиомодуль nrf24l01 используется в случаях, когда нужно получать данные от датчиков, которые расположены на удалении от управляющего устройства. Модуль прост в использовании и легко подключается к Ардуино.

Подключение к Ардуино Нано изображено на рисунке. Земля с платы соединяется с землей модуля, напряжение – на 3,3В, 3й контакт (CE) – к D9, с 4 по 7й – к D10-D12. Для 3го контакта и 4-го можно использовать любые пины, главное указать это потом в коде.

К радиомодулю может быть также припаян конденсатор между выходами земля и питание, который позволит уменьшить шумы, и сделает работу устройства более стабильной.

Для работы с модулем существует несколько библиотек. Наиболее распространенные библиотеки – это RF24 и Mirf. Выбор той или иной библиотеки определяется удобством использования.

Обзор популярных шилдов для Arduino Nano

Платы расширения (или arduino shield, шилд) используются для решения различных задач и упрощения проектов. На плате расширения устанавливаются все нужные электронные компоненты, а взаимодействие с другими контроллерами осуществляется через стандартные контакты Ардуино.

Nano Uno shield – это шилд, который позволяет превратить плату Нано в Уно. Платформа имеет различные колодки для подключения, кнопку перезагрузки и гнездо питания.

Arduino Nano Ethernet Shield – используется для обеспечения работы с сетью через Ethernet. Аналогичен такому же шилду для Arduino Uno, но имеет меньшие размеры и гораздо удобнее в реальных проектах.

Arduino Nano Motor Shield – шилд, который используется в робототехнических проектах для подключения моторов и двигателей к плате Ардуино. Его основная задача – обеспечение управления устройствами, которые потребляют большой (по сравнению с Ардуино) ток.

Также с помощью шилда можно управлять мощностью мотора и менять его направление вращения.

Моделей плат Motor Shield существует множество, у всех имеется в схеме мощный транзистор, теплоотводящие компоненты, схемы для подключения внешнего источника напряжения и разъемы ля подключения двигателей.

Arduino Nano Sensor Shield – самая распространенная платформа. Шилд прост – основной его задачей является обеспечение удобного подключения к плате Ардуино других устройств. На шилде расположены дополнительные разъемы питания и земли, разъемы для подключения внешнего источника напряжения, светодиод и кнопка перезагрузки.

Arduino Data Logging Shield – шилд, который позволяет писать лог данных с датчиков. Также он используется как файловое хранилище или часы реального времени. Для работы с шилдом существует специальная библиотека, которая позволяет логировать информацию на карту памяти.

Arduino Proto Shield – платформа для быстрого прототипирования или создания своего шилда. На этих платах расположены площадки для монтажа нужных компонентов, выведена кнопка сброса, 2 светодиода и разъем для внешнего питания. С их помощью можно повысить компактность устройства.

Итоги

Контроллеры Arduino Nano активно используются в самых разнообразных DIY проектах.

Использование миниатюрного контроллера позволяет создавать устройства в небольшом форм-факторе, что является важным для проектов в области автоматизации и робототехники.

 Эта плата довольно компактная, удобная и обладает всеми возможностями “большой Uno”. Можно рекомендовать ее к использованию даже начинающим ардуинщикам.

Источник: https://ArduinoMaster.ru/platy-arduino/plata-arduino-nano/

Nano 3.0 CH340G Arduino совместимый контроллер (без кабеля)

ROBOTDYN NANO V3 ATMEGA/CH340G

Оплата при получении!
наложенный платеж

Со склада в России!
все в наличии

500 пунктов самовывоза
в городах России

Arduino Nano 3.0 – это маленький, самодостаточный модуль, основанный на микроконтроллере ATmega328. Он имеет практически такую же функциональность, что и полноразмерная плата Ардуино, но выполнен на более компактной плате. Для программирования используется обычный Mini USB кабель. Драйвер USB на основе CH340.

Основные отличия от платы Arduino Uno

  • Использование разъема Mini-B USB для подключения к компьютеру;
  • Отсутствует разъем для подключения внешнего источника питания. Однако внешний источник питания можно подключить к контакту 30;
  • Меньшие габаритные размеры и вес модуля.

Характеристики

  • Микроконтроллер: ATmega328;
  • Драйвер USB-UART: CH340;
  • Рабочее напряжение: 5В;
  • Входное напряжение (рекомендуемое): 7-12В;
  • Входное напряжение (предельное): 6-20В;
  • Цифровые входы/выходы: 14;
  • Выходы ШИМ: 6;
  • Входы АЦП: 6;
  • Постоянный ток через вход/выход: 40 мА;
  • Флеш-память программ: 32Кб из которых 0.5 Кб используются для загрузчика;
  • ОЗУ: 2Кб;
  • EEPROM: 1 Кб;
  • Тактовая частота: 16 МГц.
  • Длина: 45мм
  • Ширина: 18мм
  • Вес: 5г

Питание

Питание на контроллер Arduino Uno R3 может быть подано тремя способами:

  • Через разъем Mini-B USB;
  • От не стабилизированного источника питания 7-12В (контакт 30);
  • От стабилизированного источника питания 5В (контакт 27);

Источник питания выбирается автоматически в зависимости от максимального напряжения.

Память

Микроконтроллер ATmega328 содержит 32кБ флэш-памяти для хранения кода программы, из которых 2кБ используются для загрузчика-программатора. 2кБ памяти ОЗУ для хранения данных программы, и 1кБ EEPROM – электрически стираемая энергонезависимая память, которая может использоваться для хранения изменяемых данных при выключении питания.

Входы/выходы

Каждый из 14 цифровых выводов на Arduino Nano может использоваться как вход или выход. Входы/выходы работают на 5 вольтах. Каждый контакт может обеспечить ток не более 40мА и имеет внутренний подтягивающий резистор (по умолчанию отключен) 20-50 ком. Кроме того, некоторые выводы имеют специальные функции:

  • Аппаратный последовательный порт UART: 0(RX) и 1(TX);
  • Внешнее прерывание: 2 и 3. Эти выводы могут быть сконфигурированы для запуска прерываний по низкому уровню, по переднему или заднему фронту, по изменению уровня сигнала;
  • ШИМ: 3, 5, 6, 9, 10 и 11. Обеспечивают 8-битный ШИМ-выход;
  • Интерфейс SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK);
  • Встроенный светодиод LED: 13;
  • Интерфейс I2C: A4 (SDA) и A5 (SCL).

Arduino Nano имеет 8 аналоговых входов, каждый из которых реализует 10-и битный аналого-цифровой преобразователь АЦП. По умолчанию они измеряют значение напряжения от 0 до 5 вольт. Можно изменить верхний предел диапазона используя контакт AREF.

На плате есть пара дополнительных контактов:

  • AREF: опорное напряжение для аналоговых входов.
  • RESET: Сброс микроконтроллера, осуществляется при низком уровне на этом входе.

Программирование

Модуль может быть запрограммирован с помощью среды разработки IDE Arduino. Используемый в модуле ATmega328 поставляется с запрограммированным bootloader-ом, который позволяет загружать новый код без использования дополнительного внешнего программатора. Программирование осуществляется с использованием оригинального протокола STK500.

Установка среды разработки для Arduino

Установка и настройка среды разработки IDE Arduino, установка драйверов, загрузка первого скетча для тестирования работы.

Подключение ультразвукового датчика расстояния HC-SR04 к Arduino

Датчик излучит в пространство серию ультразвуковых импульсов. После приема отраженного сигнала, датчик формирует на выводе импульс высокого уровня, длительность которого пропорционально расстоянию до преграды.

Подключение сервопривода к Arduino

Сервоприводы очень часто используются для осуществления перемещения механизмов в пространстве. Они позволяют достаточно точно позиционировать элементы механизмов, используя обратную связь по датчику положения.

Источник: https://mcustore.ru/store/arduino/arduino-nano-3-0-ch340-bez-kabelya/

Arduino Nano V3.0 – Характеристики платы, драйвера

ROBOTDYN NANO V3 ATMEGA/CH340G

Платформа Arduino Nano (рус. Ардуино Нано) — открытая и компактная платформа с семейства Arduino, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах.

Arduino Nano — это уменьшенный аналог Arduino Uno, отличается формфактором платы, которая в 2-2.5 раза меньше (19 x 43 мм), чем Arduino Uno (53 х 69 мм), в отсутствии силового разъема постоянного тока и работе через кабель Mini-B USB. Платформа Nano имеет контакты в виде пинов, поэтому ее легко устанавливать на макетную плату.

На плате используется чип FTDI FT232RL для USB-Serial преобразования и применяется mini-USB кабель для связи с ардуино вместо стандартного. Связь с различными устройствами обеспечивают UART, I2C и SPI интерфейсы.

Характеристики Arduino Nano V3.x ATmega328

МикроконтроллерATmega328P
Рабочее напряжение5 В
Напряжение питания (рекомендуемое)7-12 В
Напряжение питания (предельное)6-20В
Цифровые входы/выходы14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы8
ШИМ (PWM) пины
6
Постоянный ток через вход/выход40 мА
Максимальный выходной ток вывода 3.3V50 мА
Flash-память32 Кб из которых 2 Кб используются загрузчиком
SRAM2 Кб
EEPROM1 Кб
Тактовая частота16 МГц
Встроенный светодиод13
Длина45.0 мм
Ширина18.0 мм
Вес7 г

Характеристики Arduino Nano V2.3 ATmega168PA

МикроконтроллерATmega168PA
Рабочее напряжение5 В
Напряжение питания (рекомендуемое)7-12 В
Напряжение питания (предельное)6-20 В
Цифровые входы/выходы14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы8
ШИМ (PWM) пины
6
Постоянный ток через вход/выход40 мА
Максимальный выходной ток вывода 3.3V50 мА
Flash-память16 Кб из которых 2 Кб используются загрузчиком
SRAM1 Кб
EEPROM512 байт
Тактовая частота16 МГц
Встроенный светодиод13
Длина42.0 мм
Ширина18.5 мм
Вес7 г

Arduino Nano CH340G V3.0

Этот вариант Ардуино-контроллера является миниатюрной версией Arduino UNO. Его 30 выводов полностью повторяют выводы UNO и имеют два дополнительных налоговых входа А6 и А7. USB-TTL мост CH340G и USB-mini разъем позволяют проводить полноценную отладку непосредственно из среды разработки. USB-мост CH340G требует установки на компьютер драйвера, который можно скачать здесь.

Благодаря интерфейсу USB-UART реализован на базе микросхемы CH340G, данная версия Arduino Nano сильно дешевле, чем её аналог на базе микросхемы FT232RL.

Описание элементов платы Arduino Nano V3

  • USB Jack – разъем USB Mini-B для подключения устройств USB;
  • Analog Reference Pin – для определения опорного напряжения АЦП;
  • Ground – земля;
  • Digital Pins (2-13) – цифровые выводы;
  • TXD – пин передачи данных по UART;
  • RXD – пин приема данных по UART;
  • Reset Button – кнопка перезагрузки микроконтроллера;
  • ISCP (In-Circuit Serial Programmer) – контакты для перепрограммирования платы;
  • Microcontroller ATmega328P – микроконтроллер — главный элемент на плате;
  • Analog Input Pins (A0-A7) – аналоговые входы;
  • Vin – вход используется для подачи питания от внешнего источника;
  • Ground Pins – земля;
  • 5 Volt Power Pin – питание 5 В;
  • 3 Volt Power Pin – питание 3.3 В;
  • RST – вход для перезагрузки;
  • SMD Crystal – кварцевый резонатор (жарг. «кварц») — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы;
  • TX LED (White) – светодиод — индикатор отправления данных по UART;
  • RX LED (Red) – светодиод — индикатор приёма данных по UART;
  • Power LED (Blue) – светодиод — индикатор питания;
  • Pin 13 LED (Wellow) – подключенный светодиод к 13-му пину.

Описание пинов/Распиновка Arduino Nano

Каждый из 14 цифровых выводов Nano, используя функции pinMode(), digitalWrite(), и digitalRead(), может настраиваться как вход или выход. Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины FTDI USB-to-TTL.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Nano установлены 8 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством функции analogReference(). Некоторые выводы имеют дополнительные функции:

  • I2C: A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI). Для создания используется библиотека Wire.

Дополнительная пара выводов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с функцией analogReference().
  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Питание Arduino Nano

Arduino Nano может получать питание через подключение Mini-B USB, или от нерегулируемого 6-20 В (вывод 30), или регулируемого 5 В (вывод 27), внешнего источника питания. Автоматически выбирается источник с самым высоким напряжением.

Микросхема FTDI FT232RL (или CH340G) получает питание, только если сама платформа запитана от USB. Таким образом при работе от внешнего источника (не USB), будет отсутствовать напряжение 3.3 В, генерируемое микросхемой FTDI FT232RL (или CH340G), при этом светодиоды RX и TX мигаю только при наличие сигнала высокого уровня на выводах 0 и 1.

Установка драйверов

В Windows драйверы будут установлены автоматически, при подключении платы, если вы использовали установщик. Если вы загрузили и распаковали Zip архив или по какой-то причине плата неправильно распознана, выполните приведенную ниже процедуру.

  • Нажмите на меню «Пуск» и откройте панель управления.
  • Перейдите в раздел «Система и безопасность» (System and Security). Затем нажмите «Система» (System). Затем откройте диспетчер устройств (Device manager).
  • Посмотрите под Порты (COM и LPT) (Ports (COM & LPT)). Вы должны увидеть открытый порт с именем «FT232R USB UART». Если раздел COM и LPT отсутствует, просмотрите раздел «Другие устройства», «Неизвестное устройство».
  • Щелкните правой кнопкой мыши по порту FT232R USB UART и выберите опцию «Обновить драйверы…».
  • Затем выберите опцию «Выполнить поиск драйверов на этом компьютере».
  • Наконец, найдите каталог FTDI USB Drivers, который находится в папке «Drivers» программы Arduino.
  • После этого Windows завершит установку драйвера.

Выбор платы и порта

Откройте Arduino IDE. Из меню Tools>Board выбирается Arduino Nano.

Выберите микроконтроллер, на базе которого сделана ваша плата. Для Arduino Nano V3.x — это ATmega328P, а для Arduino Nano V2.x — ATmega128.

Выберите последовательный порт платы в меню Tools>Port. Скорее всего, это COM3 или выше (в моём случае — это COM5).

Если у вас модель Arduino Nano CH340G, то лучше использовать программатор Arduino as ISP.

Материалы

Arduino_Nano-Rev3.2-SCH.pdf
ArduinoNanoManual23.pdf
Arduino_Nano | Аппаратная платформа Arduino
Arduino_nano
Arduino_NANO_CH340_Rev3.pdf

Купить Arduino Nano V3 на AliExpress

Источник: https://micro-pi.ru/arduino-nano-v3-0-%D0%BE%D0%B1%D0%B7%D0%BE%D1%80-%D0%B4%D1%80%D0%B0%D0%B9%D0%B2%D0%B5%D1%80%D0%B0/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.