СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Содержание

Преобразователи напряжения c 12 В на 220 В: обзор схем и вариантов реализации

СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Преобразователи напряжения с 12 В на 220 В интересны всем, кто много ездит и проводит немало времени в машине. Приходится запитывать и заряжать ноутбук, коммуникатор, беспроводные наушники, сотовый телефон, порой нужен даже автомобильный холодильник (лучше, конечно, на 12 вольт, такие продаются).

Такой преобразователь можно подключать к прикуривателю либо к аккумулятору. Подключать стоит к аккумулятору напрямую, поскольку в прикуривателе тоненькие провода, а при зарядке потребляется много тока.

Для ноутбуков стоит иметь DC-DC инвертор, нет смысла преобразовывать 12 В в 220 В, включать в инвертор блок питания ноутбука, который опять 220 В преобразует в 19 В (питание ноутбука примерно такое). Но это вводная, перейдем к практике.

Надежная, но маломощная схема

Преимущества:

  • схема проверена, не подведёт;
  • если не нужна мощность, а зарядить телефон, и фонарики – то, что нужно;
  • не каждый блок бесперебойного питания будет работать в таком режиме.

Недостатки:

  • малая мощность (50 Вт);
  • моральная старость.

Как работает схема преобразователя

В схеме три функциональные узла: задающий мультивибратор (вырабатывает импульсы 50 Гц, инвертор на выходе), двухтактный транзисторный ключевой усилитель мощности, повышающий трансформатор.

В основе мультивибратора – микросхема D1 (D1.1 + D1.2). Номиналы R1, С1 задают частоту мультивибратора. Инвертор – выход D1.4 микросхемы. Транзисторы VT3, VT4 усиливают мощность импульсов, которые принимает низковольтная обмотка транса Т1.

Импульсным током низковольтной обмотки в высоковольтной обмотке наводится напряжение 220 В, его форма близка к синусоидальной.

Повышающая обмотка и конденсатор С4 образуют контур, настроенный на частоту 50 Гц, это улучшает форму напряжения на выходе.

Микросхему К561ЛН2 можно заменить другими инверторами – микросхемами К561ЛА7, К561ЛЕ5. Серия К176 в этой схеме не рекомендуется.

Транзистор КТ973 может иметь любой буквенный индекс.

Транзистор КТ805, возможная замена – КТ819, буквенные индексы любые.

Повышающим трансформатором могут быть любые сетевые трансформаторы с мощностью 50-100 Вт, с первичной обмоткой 220 В, а две вторичные — 10-15 В в каждой (можно одну, имеющую в середине отвод на 20-30 В). При этом нужно помнить об обратном включении трансформатора!.

Транзисторам VT4 и VT3 нужны радиаторы для надежного теплоотвода

Источник: РадиоКонструктор №5/1999, стр. 27

Простая схема мощностью 110-130 Вт (75 Герц)

Преимущества:

  • простая сборка;
  • надежен, не боится перегрузок и КЗ;
  • копеечная стоимость.

Недостатки: тяжелый и громоздкий.

В основе этой конструкции – схема простейшего преобразователя напряжения DC/AC, при соблюдении всех параметров налаживание не требуется, можно обойтись только паяльником.

После подачи питания схема запускается сразу, не требует настройки (естественно, нужно замерить выходное напряжение).

Используется общий коллектор, все транзисторы можно установить на один радиатор, изолирующие прокладки не нужны. Монтаж навесной.
Вариант 1:

Вариант 2.

Использованы:

  • резисторы – 5-10 Ом, 0.5 Вт;
  • резисторы силовой части — 5-10 Ом, 2 Вт;
  • конденсатор на выходе инвертора — 0.3-0.8 мкФ 400 В (не электролитический и не полярный);
  • транзисторы Т1 и Т2 – почти любые РпР структуры (КТ835, КТ837, КТ818, П213, П214, П215, П216, П217) или другие, близкие к ним по параметрам;
  • транзисторы Т3-Т6…Т10 – также РпР структуры (П210, П213-П217, КТ835Б, КТ837, КТ818, КТ818ГМ.

От выбора типа транзисторов силовой части инвертора будет зависеть выходная мощность инвертора. Лучший вариант — полевые транзисторы, но нужно заменить резисторы на более высокое сопротивление, подходящее под тип отобранного транзистора.

Задающий генератор собран на транзисторах Т1-Т2, 2-х резисторах и трансформаторе Тр1.

Трансформатор ТР1:

  • обмотки 1 и 4 – по 10 витков;
  • обмотки 2 и 3 – по 30 витков;
  • обмотки 5 и 6 – по 10 витков.

Все обмотки можно мотать проводом любой марки диаметром 0.4-0.5мм. Для лучшей синхронизации каналов желательно обмотки 1 и 4, 2 и 3, 5 и 6 мотать бифилярно, т.е. по 2 провода вместе.

Трансформатор ТР1 – ш-образный на железе с площадью сечения сердечника не менее 4см (если сечение окажется недостаточным,то задающий генератор запустится на высоких частотах,от 800Гц до 10-12Кгц,о чём подскажет высокочастотный писк трансформатора). Можно взять из чб лампового телевизора трансформатор ТВ-3Ш,он небольшого размера.

В зависимости от применяемых транзисторов и типа трансформатора частота и напряжение на обмотках 5 и 6 может измениться. Нормальным для работы силовой части инвертора будет напряжение 7-10 В.

При сборке задающего генератора номиналы элементов обоих каналов должны быть строго идентичны для обеспечения синхронной работы всего инвертора. Особое внимание нужно уделить правильной фазировке обмоток 1, 2, 3 и 4. Начала всех обмоток обозначены точками.

Трансформатор ТР2:

  • обмотка 3 намотана проводом диаметром 0,5-0.8мм,содержит 600 витков;
  • обмотки 1-2 – проводом диаметром 2мм, по 24 витка;

Можно использовать готовый сетевой трансформатор, имеющий 2 выхода по 12 вольт, просто подключив его “наоборот”. Но в этом случае, возможно, придётся корректировать число витков вторичной обмотки 3. Выходная мощность будет зависеть от типа транзисторов, их количества и габаритной мощности трансформатора. Ну и номиналы элементов обоих каналов должны быть идентичны.

Осциллограмма импульсов инвертора на выходе:

Готовый преобразователь:

Источник: http://elektroshoker.org/forum/12-35-1

Простой маломощный на двух транзисторах

Отечественная комплектация использована в следующей очень простой и надежной схеме преобразователя напряжения 12 В в 220 В (разрабатывалась для энергосберегающей лампы). Схема не требует наладки, в ней 2 транзистора, конденсатор, два резистора и трансформатор.

Транзисторы подобраны для минимального тока потребления (КТ814 и КТ940), под них определены сопротивления и емкость, номиналы которых указаны на схеме.

Эта конструкция оптимальна для питания энергосберегающей лампы 8,9,11 Вт, потребление тока колеблется от 0.5 до 0.54 А.

Трансформатор сделан из ферритовых чашек диаметром 35 мм, высотой 20мм. Вначале наматывается первичная обмотка – 14 витков, провод диаметром 0,5 мм, после намотки она оборачивается изолентой в один слой. Вторичная обмотка – провод диаметром 0.2 мм, 220 витков, поверху также обмотка изолентой в один слой. Затем каркас с намоткой помещается в ферритовые чашки и садится на болтик.

Ниже показаны фотографии.

Ферритовая чашка.

Намотанные катушки индуктивности.

Готовый трансформатор

Преобразователь питает энергосберегающую лампу.

Источник: http://www.radioStorage.net/.

Для просмотра схем более мощных преобразователей щелкните на цифре 2.

Преобразователь мощностью до 400 Вт

Схема состоит из задающего генератора (микросхема А1 — КР1211ЕУ1, зарубежного аналога не имеет — это задающий генератор с двумя выходами: прямым и инверсным, соответственно 4 и 6), двух ключей (полевики VT1 и VT2), трансформатора Т1 (повышающего).

Вывод 1, когда на него подается высокий уровень сигнала, останавливает генератор, в этой реализации не использован, в схеме на него подается сигнал постоянного низкого уровня.

Частота генерации определяется R1 – C1, надежный запуск генератора обеспечивают R2 – C2. Стабилизатор (элементы R3, VD1, C3, стабилизация 8-10 В) питает микросхему.

На выходе — двухтактный каскад: два мощных полевых транзистора IRL2505 (при нагрузке до 200 Вт радиаторы не требуются, если возможна большая нагрузка — радиаторы обязательны).

Трансформатором может быть какой-угодно сетевой с двумя обмоткми на 12 В требуемой мощности, лучше тороидальный, можно другой, но должно соблюдаться следующее условие: по мощности трансформатор должен превышать предполагаемую нагрузку в 2 (это если тороидальный сердечник) – 2.5 раза. Пример: если нагрузкой будут 100 Вт – нужна мощность 250 Вт, если тороидальный — 200 Вт.

Конденсатором С6 (он сглаживает импульс) — может быть К-73-17 либо подобный, напряжением 400 В или выше. Когда мощность потребления большая, ток с 12 В может превышать 40 А, вот почему на сечение и длину шины питания необходимо обратить внимание.

Источник: http://esxema.ru/

Мощный преобразователь напряжения с 12 В на 220 В

Предназначен для нагрузки до 1000 Вт, требующей переменного напряжения 220В. Использованы старые транзисторы П216, которые радиолюбители еще могут найти в своем хозяйстве.

В качестве задающего генератора здесь используются транзисторы VT1, VT2 и трансформатор Т1 – задается частота 200 Гц. Вторичная обмотка Т1 сигнал через конденсаторы отправляет к электродам тиристоров VD1, VD2, которые создают импульсное напряжение в первой обмотке трансформатора Т2.

Неполярный конденсатор С4 (его емкость) подобран так, что его напряжение поочередно закрывает тиристоры. Резистором R3 защищаются цепи 12 В от перегрузки во время открывания тиристора.

У трансформатора Т1:

  • у сердечника – пластина Ш16Х10;
  • в обмотке 1 – 40+40 витков ПЭЛ 0.8;
  • в обмотке 2 – 10+10 витков ПЭЛ 0.3;
  • в обмотке 3 – 20+20 витков ПЭЛ 0.3.

В трансформаторе Т2:

  • в сердечнике – пластина Ш50Х60;
  • в обмотке 1 – 40+40 витков проводом 3 мм в диаметре;
  • в обмотке 2 – 460 витков, провод ПЭЛ 0.8.

Использование тиристоров КУ202 позволит собрать подобный преобразователь меньшей мощности.

Также можно применить новые кремниевые транзисторы, в этом случае требуется корректировка режима постоянного тока.

Источник: http://www.payatel.ru/

Схема инвертора мощностью 300 Вт

Ниже приведена уменьшенная схема, полноразмерная схема для более комфортного просмотра здесь.

Достоинства:

  • беспроблемная работа при нагрузке до 300 Вт;
  • возможна нагрузка до 650 Вт (при сильном нагреве проводов и падении напряжения до 190 В).

Недостатки:

  • сложность, требуется импортная комплектация;
  • более высокая стоимость.

Трансформатором может послужитьимпульсный блок питания (нерабочий советский телевизор в самый раз). Нужно перемотать, сточить зазор на феррите (если из двух таких трансформаторов взять по одной половинке феррита, ничего точить не придется).

В трансформаторе преобразователя возможно использование двухколец, оба 40х25х11, склеенных вместе. Первичная – та же, что в ТПИ-3, вторичная – на 60 витков.

Первичная – в двух обмотках 3 повода на 0.8 у плеча – в одном плече 5 витков и во втором плече 5 витков.

Вторичная – два провода на 0.8. При наматывании используется метод проверки. Вначале половину вторичной — два провода 0.8 + изоляция, затем первичную два плеча, опять изоляция, еще раз вторичная – ее подгоняем для нужного вольтажа (230 В).

В качестве корпуса лучше использовать компьютерный блок питания АТХ, в нем есть кулер, который лучше оставить и применить для охлаждения при повышенной нагрузке.. Ниже показаны фотографии сделанного устройства.

Источник: http://radiostroi.ru/

Источник: https://radiofishka.in.ua/ru/content/obzor-shem-preobrazovateley-napryazheniya-s-12-v-na-220-v

Пробуем сделать преобразователь напряжения самостоятельно

СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Первой и основной целью моей работы было сделать повышающий преобразователь напряжения с 12 на 220 вольт. То есть, усложнять себе задачу я не собирался, поэтому предлагаемый мной вариант сборки имеет одно неоспоримое достоинство: он крайне прост.

Рис.1: Импульсный преобразователь напряжения.

Прибор строится по двухтактной схеме. Для воплощения данной схемы мне понадобилось только два полевых транзистора без задающих генераторов. По этой причине, даже при отсутствии соответствующего опыта, вам не составит труда собрать преобразователь напряжения своими руками.

К тому же, все необходимые для этого элементы всегда есть под рукой у любого радиолюбителя. Если говорить о выходной частоте, предлагаемого мной устройства, то она, к сожалению, является переменной.

Но это очень просто можно поправить, если на выходе установить диодный выпрямитель и конденсатор, с расчётной ёмкостью на 100 мкФ при напряжении 400 Вольт.

Хотя, если ёмкость будет слегка меньше, никакими проблемами это вам не грозит.

Тот преобразователь напряжения, который собирал я, можно, пожалуй, отнести к категории резонансных, поскольку рабочая частота зависит от колебательного (LC) контура.

А в качестве катушки используется первичная обмотка трансформатора, параллельно которой установлен конденсатор небольшой ёмкости на 2,2 мкФ (400 Вольт).

Но в любом случае, даже при самом плохом стечении обстоятельств вы сможете настроить ваш прибор на необходимую частоту экспериментальным путём. Кроме того, частоту преобразователя напряжения можно отрегулировать затворными ограничительными резисторами.

В качестве силовых ключей использовал довольно мощные канальные полевые транзисторы высоковольтного типа (примерно 200 Вольт). Но вы, в случае со своим собственным устройством, вполне можете заменить их на низковольтные.

Не забывайте, что мощность конечно же, в первую очередь определяется трансформатором и полевыми транзисторами. Точно могу сказать, что по выполненной мной схеме можно получать до 0,5 кВт выходной мощности. По-моему, неплохо, если собираешь простенький преобразователь напряжения своими руками.

На самом деле, я при сборке данной схемы был далеко не оригинален, подобные преобразователи  и схемы к ним встречаются везде и  их трудно не заметить, и не опробовать.

К самой плате генератора помимо транзистора подсоединяются также стабилитроны, которые стабилизируют затворное напряжение. Для этой цели подходят элементы мощностью 0,5 ватт, 1 ватт, 1,3 ватт.

 Они не имеют склонности перегреваться, хотя конечно будет лучше, если вы возьмёте более мощные экземпляры. Напряжение стабилизации у стабилитрона должно быт от 10 вольт до 15 вольт.

Сам я воспользовался стабилитронами на 15 вольт.

Конкретные параметры данного элемента нет необходимости учитывать. По сути, и сами эти элементы можно просто изъять из схемы преобразователя напряжения. Конечно, цепь будет работать не так хорошо, как если бы все составляющие были на месте, но всё же функционировать она от этого не перестанет.

Существуют затворные ограничители на 470 Ом, я брал на 390 Ом, и здесь возможны отклонения от 100 до 470 Ом. Также мною были применены диоды ультрабыстрого типа. Подойдут сюда также и просто быстродействующие диоды с током минимум в 1А 9при желании можно использовать и более мощные экземпляры.

Если использовать один общий теплоотвод для транзисторов, обязательно нужно изолировать их специальными слюдяными прокладками и изолирующими шайбами.

Я сделал два раздельных теплоотвода для транзисторов преобразователя напряжения, поэтому они не будут сильно нагреваться даже к тех случаях, когда задействована максимальная мощность. Возможен небольшой перегрев входного дросселя, поэтому его необходимо будет обмотать проводом диаметром до двух миллиметров.

Брал дроссель от компьютерных блоков питания на порошковом железе. Количество витков на дросселе не принципиально, определяется по своему усмотрению (примерно от 7 до 15).

Чтобы получить 220 Вольт, я применил уже готовый трансформатор. Первичная обмотка (когда она делается без отвода) состоит из восьми витков толстого провода (8мм или больше) в 3-4 шины.

Если говорить конкретно про напряжение в 500 ватт, то первичная обмотка содержит 7-8 витков по 10 жил провода на 0,7 мм. Вторичная обмотка составляет всего 48 витков провода с диаметром в 1 мм. Можно мотать и более тонкими проводами, например 2 жилы по 0,5 мм. Возможно, что так вам будет удобнее.

Используемая мной схема хороша тем, что в неё можно включить уже готовые трансформаторы и применять их в уже готовом блоке питания. При этом нет необходимости что-то перематывать. Сетевая обмотка, которая в компьютерном блоке являлась первичной, в вашем устройстве станет уже вторичной.

Пара выводов на 12 Вольт должна быть подключена к силовым выводам транзистора. Проверку на рабочесть я проводил с помощью лампы на 100 Ватт. По результатам этой проверки стало очевидно, что цепь совершенно не перегружена.

Конечно, для использования такого инвертора в реальной жизни потребуется обеспечить выпрямление тока. С этой целью можно применить такие же диоды, как и те, что использовались на плате.

А далее, получившееся устройство можно спокойно использовать для зарядки телевизора, ноутбука, телефона. Но не стоить соединять инверторы к приборам с сетевым трансформатором или электродвигателем, это ни к чему хорошему не приведёт.

Для расчёта вторичной обмотки при сборке преобразователя напряжения своими руками потребуется:

  • Выявить, сколько вольт даёт каждый дополнительный виток (для этого питающее напряжение следует поделить на количество витков первичной обмотки);
  • Нужное значение напряжение поделить на показатель виток/вольт, если получившееся число оказалось дробным (и дробная часть при этом не менее половины единицы), то округлить его в сторону большего значения.

Для расчёта первичной обмотки потребуется:

  • Вычислить максимальный потребляемый ток первичной обмотки: Pmax/12=Imax, где Pmax – максимально потребляемая мощность;
  • Ориентируясь на силу и плотность (ампер на мм2) тока вычислить необходимую площадь или подходящее сечение провода.

Поскольку движение тока происходит не по всему проводу, а только по его поверхности, то скорее всего придётся заменить один толстый провод на несколько тонких. К тому же это позволит снизить степень нагревания.

Трансформатор

Когда уже вычислено необходимое количество витков для первичной обмотки, можно взяться за намотку трансформатора.

Для этого нужно взять все провода холостого хода, скрутить в косичку и начать делать обмотку.  То же самое нужно проделать со второй частью первичной обмотки.

Принципиально, чтобы распределение витков от обеих обмоток было равномерным.

В противном случае может произойти, перегрев трансформатора, особенно в том случае, если мощность будет максимальной или близкой к таковой, а уровень напряжения вторичной обмотки будет проседать всё с большей силой.

Дроссель

Дросселя для преобразователя напряжения наиболее удобно мотать с помощью жёлтых колец, которые можно изъять из компьютерного блока питания.

Изначально они изготавливаются на 5-6 витков, но согласно практике, лучше всего, если мотается по 2-3 витка на вольт. К сожалению, из-за подобной модернизации дроссель становится весьма громоздким.

Желательно, чтобы используемый для обмотки дросселя провод в сечении был не менее 2 мм, в противном случае вся мощность уйдёт в никуда.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: https://elektronchic.ru/domashnij-elektrik/preobrazovatel-napryazheniya-svoimi-rukami.html

Простейший преобразователь и инвертор 12В – 220В своими руками

СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Можно вспомнить много случаев, когда пригодился бы преобразователь из 12 вольт постоянного тока в 220 вольт переменного – например, приехав на дачу на автомобиле, можно вечером включить освещение или запитать от аккумулятора насос для полива. Также такой инвертор – неотъемлемая часть ветряных генераторов.

Купить готовое устройство не составит проблем – в автомагазинах можно найти автомобильные инверторы (импульсные преобразователи напряжения) различной мощности и цены.

Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.

Простой импульсный преобразователь

Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера.

Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц.

Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.

Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами.

Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя.

Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.

Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.

Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.

Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей.

Схема преобразователя с выходом переменного тока

Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.

Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.

Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.

Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник. Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.

Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.

Простой инвертор на транзисторах

Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.

Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.

Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами. Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Читайте так же:  Рассмотрим, какой стабилизатор напряжения выбрать?

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече.

Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов.

В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

На примере последней схемы это будет выглядеть так:

Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас, если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:

Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР: Возьмем реле с напряжением срабатывания (Uр) 9 вольт и сопротивлением обмотки (Rо) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (Umin) , последовательно с обмоткой нужно включить резистор с сопротивлением Rн, рассчитываемым из условия равенства Uр/Rо=(Umin—Uр)/Rн. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.

Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:

Регулировка порога срабатывания осуществляется подбором резистора R3.

Предлагаем посмотреть видео по теме

Обнаружение неисправностей инвертора

Перечисленные простые схемы имеют две наиболее распространенных неисправности – либо на выходе трансформатора отсутствует напряжение, либо оно слишком мало.

  • Первый случай – это либо одновременный отказ обоих плеч преобразователя, что маловероятно, либо отказ ШИМ-генератора. Для проверки воспользуйтесь светодиодным пробником, какой можно приобрести в любом магазине радиодеталей. Если ШИМ работает, на затворах транзисторов Вы увидите наличие сигнала по быстрым пульсациям свечения диода (особенно хорошо это заметно в низкочастотных схемах). При наличии управляющего сигнала проверьте, нет ли обрывов в соединениях трансформатора и целостность его обмотки.
  • Большое падение напряжения – это явный признак отказа одного из силовых плеч инвертора. Найти отказавший транзистор можно простейшим образом – его радиатор останется холодным. Замена ключа вернет инвертору работоспособность.

Заключение

Как можно понять из материалов статьи, сделать своими руками несложный преобразователь 12 – 220 вольт не так и трудно.

И, хотя такие устройства и не смогут сравниться по набору дополнительных функций или привлекательности внешнего вида с заводскими, они обойдутся хозяину значительно дешевле.

При соблюдении правил эксплуатации самодельный преобразователь будет работать очень долго, ведь в таком простом устройстве практически нечему ломаться.

Напоследок предлагаем посмотреть еще один видеоматериал, про изготовление устройства из БП компьютера

Для экономии времени и сил, можно приобрести готовый недорогой преобразователь. В зависимости от целей использования, цены начинаются от 899 р.

Инвертор AIRLINE API-75-00

Максимальная выход. мощность 150 Вт

Напряжение: 12 В/220 В

Предназначен для питания мелких устройств с потребляемой мощностью до 75Вт, например: небольших видеокамер, MP3 -плееров, осветительных приборов и т.д.

899 р.

Инвертор AVS IN-200W

Максимальная выход. мощность 400 вт.

Напряжение: 12 В/220 В

Для MP3 плееров, ноутбуков, телефонов

1419 р.

PITATEL KV-M300U.24

Максимальная выход. мощность: 600 Вт

Напряжение:24/220-240 В

Для зарядки и использования любого электронного устройства: мобильного телефона, ноутбука, фотоаппарата, планшета, MP3-плеера и т.п.

2259 р.

AIRLINE API-400-03

Максимальная выход. мощность: 400 Вт

Напряжение 12/220 В

Для ноутбуков, авто телевизоров, dvd плееров, М3-плееров и т.д.

3069 р.

AVS 12/220V IN-1500W

Максимальная выход. мощность: 3000 Вт

Напряжение: 220 В

бытовой аудио-видео техники, компьютера, ноутбука, небольшого авто холодильника, авто пылесоса (до 100 Вт), электроинструментов с низким пусковым током (например дрель)  до 900 Вт.

4949 р.

Источник: https://generatorexperts.ru/elektrogeneratory/preobrazovatel-12v-220v.html

Инвертор напряжения ⋆ diodov.net

СХЕМА ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

С развитием альтернативных источников энергии, в частности с массовым внедрением солнечных панелей, инвертор напряжения находит все более широкое применение.

Поскольку применяется как постоянный, так и переменный ток, то часто возникает необходимость в преобразовании энергии одного рода в другой. Устройства, преобразующие переменный ток в постоянный называются выпрямителями.

В качестве выпрямителя чаще всего применяют диодный мост. А устройство, преобразующее постоянный ток в переменный называют инвертором.

По ряду положительный свойств большую популярность завоевал инвертор напряжения. Особенно широко он используется с целью преобразования электрической энергии постоянного тока аккумуляторной, солнечной батареи или суперконденсатор в переменное напряжение 230 В, 50 Гц для питания большинства промышленных устройств.

Принцип работы инвертора напряжения

Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто.

Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц.

Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.

На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4.

В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты.

Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн VT4«-» Uип.

Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания в соответствующем направлении.

Режим работы схемы

Для изменения направления снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты.

Однако, поскольку нагрузка активно-индуктивная, то не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности .

Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания , в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать через LнRн уже в другую сторону.

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Работа схемы

Начиная с момента t5 iн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться.

На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться.

Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы и будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное , поэтому через LнRн протекал максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера.

Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер.

Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Инвертор напряжения с регулированием выходных параметров

Самый простой способ изменить величину uн заключается в регулировании величины подводимого Uип, если такая возможность имеется. Например, для регулируемого выпрямителя это не проблема.

Но такие источники электрической энергии как аккумуляторная батарея, суперконденсатор или солнечная батарея не имеют данной возможности.

Поэтому регулировка частоты и величины выходного полностью возлагается на инвертор.

Для регулирования величины одну пару диагонально противоположных транзисторов следует открыть несколько ранее, чем в рассмотренном выше случае.

Поэтому алгоритмом системы управления следует предусмотреть сдвигу управляющих сигналов.

Например, подаваемых на открытие VT1 и VT4 относительно импульсов управления, подаваемых на базы VT2 и VT3, на некоторый угол, называемый углом управления α.

Обратите внимание, что амплитудное значение остается неизменной величины и приблизительно равно значению Uип, но действующее значение будет снижаться по мере увеличения угла управления α. Рассмотрим, как это работает.

На интервале времени от t1 до t2 открыта пара транзисторов VT1 и VT4; iн протекает справа налево, как показано на схеме.

В момент t2 закрывается первый транзистор и открывается второй.

Ток сохраняет прежнее направление, а нагрузка оказывается замкнутой, в результате чего напряжение на ней падает практически до нуля, соответственно снижается и .

Далее из системы управления поступает команда и VT2 открывается, а VT4 закрывается.

Однако накопленная в индуктивности энергия не позволяет току изменить свое направление, и он протекает по прежней цепи, только уже через диоды VD2 и VD3 встречно источнику питания.

Длительность этого процесса продолжается до точки времени t4. В точке t4 под действием приложенного Uип iн изменяет знак на противоположный.

Широтно-импульсная модуляция

Такой алгоритм работы полупроводниковых ключей в отличие от предыдущего алгоритма формирует паузу определенной длительности, которая в конечном итоге приводит к снижению действующего значения. Для формирования синусоидальной формы применяется широтно-импульсная модуляция ШИМ. Преобразователь с ШИМ, а точнее алгоритм его работы, предусматривающий ШИМ, мы рассмотрим отдельно.

Также следует заметить, что рассмотренный алгоритм управления полупроводниковыми ключами называется широтно-импульсным регулированием ШИР, который часто путают с ШИМ, хотя разница огромная.

В преобразовательной технике ШИМ практически вытеснила ШИР, поскольку обладает рядом положительных свойств, благодаря которым повышается КПД всего устройства и снижается уровень электромагнитных помех. Поэтому в дальнейшем мы рассмотрим инвертор напряжения с ШИМ.

Источник: https://diodov.net/invertor-napryazheniya/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.