СХЕМА УМЗЧ

Содержание

Усилитель звука на транзисторах #1 ⋆ diodov.net

СХЕМА УМЗЧ

Усилитель звука относится к одному из наиболее интересных электронных устройств для начинающих электронщиков или радиолюбителей.

И это не удивительно, ведь если устройство собрано правильно, то достаточно подключить динамик и сразу же раздастся звук, оповещающий о том, что усилитель мощности работает.

Наличие звука приносить радость успешного завершения сборки усилителя звука своими руками, а его отсутствие – разочарование. Поэтому цель данной статьи – принести радость начинающему электронщику. Но сначала все по порядку…

Усилитель мощности на транзисторах. Базовые положения

Усилитель мощности на транзисторах присутствует в том или ином виде во многих электронных устройствах. Особенно ярко выделено его применение в звуковой технике.

Современный мир электроники полностью опутан различными запоминающими устройствами: флешки, жесткие диски и т.п. Для воспроизведения информации, хранящейся в памяти накопителей, нужно, прежде всего, преобразовать и усилить ее сигналы.

Главное назначение любого усилителя состоит в преобразовании маломощного сигнала в более мощный. При этом форма его должна сохраняться и не искажаться в процессе преобразования. Иначе произойдет частичная или полная утеря информации.

Начинающим электронщикам следует помнить очень важный момент. Усиление происходит не за счет каких-либо магических свойств транзистора, а за счет энергии блока питания. Транзистор лишь управляет потоком мощности от источника питания к нагрузке.

Причем он выполняет свою работу в нужные моменты времени. Отсюда становится понятно, что мощность на нагрузке ограничена лишь мощностью блока питания.

Если нагрузка, например динамик, имеет мощность 10 Вт, а источник тока способен выдать только 5 Вт, то нагрузка будет способна развить только 5 Вт.

Структура усилителя состоит из источника и узла, согласующего входной сигнал с источником тока. Такое согласование позволяет получить выходной сигнал.

Устройство транзистора

Поскольку главным элементом усилителя является транзистор, то рассмотрим вкратце устройство и принцип работы это полупроводникового прибора.

Среди довольно обширного выбора полупроводниковых приборов, как по характеристикам, так и по принципу действия, в данной статье мы рассмотрим, и будем применять исключительно биполярные транзисторы (БТ).

Такой электронный прибор состоит из полупроводникового кристалла и трех, подсоединенных к нему электродов. Вся конструкция помещается в корпус, который защищает прибор от разных внешних воздействий (пыль, влага и т.п.). От корпуса отходят три вывода: база (Б), коллектор (К) и эмиттер (Э).

Существуют принципиально два типа БТ n-p-n и p-n-p структуры. Принцип работы их аналогичен, а отличие состоит лишь в полярности подключения к их выводам источника питания и радиоэлектронных элементов, имеющих полярность, например электролитических конденсаторов.

Биполярный транзистор имеет два pn-перехода, поэтому конструктивно его можно рассматривать, как два последовательно встречно соединенных диода. Точка соединения диодов аналогична базе. Но если взять два любых диода и соединить их соответствующим образом, то в такой конструкции не будут проявляться усилительные свойства.

Причина в том, что у «настоящего» транзистора слишком малое расстояние между различными полупроводниковыми структурами (база-эмиттер, база-коллектор). Расстояние равно единицам микрометра, то есть несколько тысячных миллиметра (1мкм = 0,001 мм = 0,000001 м). Именно за счет малого расстояния получается транзисторный эффект.

Как работает биполярный транзистор (БТ)

Принцип работы БТ упрощенно рассмотрим на примере ниже приведенной схемы.

Базу оставим не подключенной либо соединим ее с минусом источника питания. Последний вариант более предпочтительный, поскольку исключает появление наводок на выводе.

Чтобы исключить короткое замыкание в цепь коллектора следует установить резистор Rн, он же будет служить нагрузкой.

Однако при подключении источника питания Uип, ток в цепи VT и Rн протекать не будет (обратный ток мы не берем в счет, поскольку его значение слишком мало и не превышает единиц микроампер).

Отсутствие тока в цепи поясняется тем, что транзистор закрыт. И если вернуться к аналогии с диодом, то мы заметим, что один из них находится под обратным напряжением, поэтому он заперт.

Открыть БТ не составит большого труда. Следует на базу относительно эмиттера (для n-p-n структуры) приложить положительный потенциал, то есть подать напряжение, например от другого источника питания – батарейки. Величина напряжения должна быть порядка 0,6 В, чтобы скомпенсировать падение напряжения на эмиттерном переходе. Резистор Rб служит для ограничения тока, протекающего в цепи базы.

Таким образом, если подать небольшое напряжение на базу, то в цепи нагрузки Rн будет протекать ток коллектора Iк. При смене полярности блока питания VT закроется.

Чтобы не запутаться и правильно подключать источник питания следует обратить внимание на направление стрелки эмиттера. Она указывает на направление протекания токов Iк и Iб.

Для БТ n-p-n типа Iк и Iб входят в эмиттер, а для p-n-p – выходят.

Коэффициент усиления транзистора

Токи базы Iб и коллектора Iк находятся в тесной взаимосвязи. Более того, величина тока, протекающего в цепи коллектора помимо параметров Uип и Rн определяются величиной Iб в прямопропорциональной зависимости. Отношение Iк к Iб называется коэффициентом усиления транзистора по току и обозначается буквой β («бета»):

Коэффициент усиления является одним из важнейших параметров БТ и всегда приводится в справочниках. Для большинства маломощных БТ он находится в диапазоне 50…550 единиц. В общем, β показывает во сколько раз ток коллектора больше тока базы.

Усилитель звука на транзисторах

Усилитель звука на транзисторах предназначен для повышения мощности сигнала звуковой частоты, поэтому его еще называют усилитель мощности звуковой частоты или сокращенно УМЗЧ. Источником звука, подлежащего усилению, чаще всего служит микрофон или выход звуковой карты компьютера, ноутбука, смартфона и т.

п. Мощность таких источников довольно низкая и составляет микроватты, а для нормальной работы динамика (громкоговорителя) необходимо обеспечить мощность единицы и десятки ватт, а то и сотни ватт. Поэтому главной задачей УМЗЧ является повышение мощности слабого входного сигнала в тысячи и десятки тысяч раз.

Звуки раздающейся мелодии или речи имеют сложный характер. Однако любой из них, даже самой сложной формы можно разложить в ряд сигналов синусоидальной формы, отличающихся как по частоте, так и по амплитуде.

Поэтому с целью упростить пояснение принципа работы схемы УМЗЧ будем применять входной сигнал синусоидальной формы uc. Нагрузкой на первых порах вместо динамика буде служить резистор Rн.

Однако приведенная выше схема применяется лишь для работы БТ в ключевом режиме, то есть когда полупроводниковый прибор VT находится в двух фиксированных состояниях – открытом и закрытом.

Для усиления переменного сигнала данная схема непригодна, поскольку будет усиливаться только положительная полуволна входного сигнала. Для отрицательной полуволны транзистор будет закрыт.

Кроме того, амплитуда входного сигнала должна быть не меньше 0,6 В, иначе просто останется незамеченным, поскольку не откроется эмиттерный переход.

Базовая схема входного каскада УМЗЧ

Чтобы схема УМЗЧ работала правильно, а это означает, усиливала без искажений положительные и отрицательные полуволны, изначально следует приоткрыть VT наполовину. Тогда положительная полуволна будет еще больше открывать БТ, а отрицательная – призакрывать его.

Приоткрыть БТ можно небольшим напряжением, поданным на базу, оно же называется напряжением смещения. Сам процесс называют установкой рабочей точки транзистора по постоянному току. Напряжение смещения зачастую подается от общего источника питания через токоограничивающий резистор Rб, согласно схемы, приведенной ниже.

Чтобы постоянное напряжение не воздействовало на источник переменного сигнала, а также не нарушался режим работы схемы по постоянному току, переменная составляющая отделяется конденсатором С1, а нагрузка подключается к коллектору через разделительный конденсатор C2 к клеммам uвых.

Источник: https://diodov.net/usilitel-zvuka-na-tranzistorah-1/

Усилитель своими руками: ламповый, на транзисторах, на микросхемах

СХЕМА УМЗЧ

— Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале.

Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты).

А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией.

Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

УМЗЧ мощностью 350 Вт

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний.

Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков.

А пока достаточно будет умения паять электропаяльником и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

Простейшие усилители звука

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя.

В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см.

далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы.

Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт.

Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден.

Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются.

То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом.

Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

УМЗЧ на мощных полевых транзисторах

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают.

Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред.

случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри.

Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г.

Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ.

Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная).

Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм.

Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Чертежи печатных плат и указания по налаживанию простого высококачественного УМЗЧ

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке.

К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.

), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

провода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла.

Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается.

Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно.

Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей.

Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком.

Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке.

Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный».

Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к.

на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками.

Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Источник: http://stroylegko.com/prochee/usilitel-svoimi-rukami-lampovyy-na-tranzistorah-na-mikroshemah

Схемы УМЗЧ на транзисторах: Секреты надежности усилителей

СХЕМА УМЗЧ

Схемы УМЗЧ на транзисторах: секреты надежности усилителей, принципы самостоятельной сборки усилителей мощности, правильные расчеты схемы УМЗЧ на транзисторах.

В данной статье представлены общие рекомендации по самостоятельной сборке усилителей мощности звука. Все показанные расчеты несколько упрощены в сторону запаса не более, чем на 15%.

Выбор драйверного каскада для усилителя мощности

Драйверным каскадом называют каскад который непосредственно работает на управление оконечного каскада, как правило это первый каскад после усилителя напряжения, обычно эмиттерный повторитель, но при использовании каскодных выходных каскадов может быть включен и по схеме с общим эмиттером.

Основная задача драйверного каскада заключается в разгрузке усилителя напряжения и позволяет развить необходимые токи управления базами мощных выходных транзисторов. Рассмотрим что именно происходит в единичный момент времени в усилителе, для наглядности возьмем довольно популярный усилитель мощности ЛАНЗАР. Схема печатной платы усилителя Ланзар.

Для того, чтобы понять все процессы происходящие в усилителе переделаем его под усилитель постоянного напряжения и это позволит контролировать ВСЕ что происходит в усилителе на протяжении одной полу-волны синусоидального сигнала. В результате переделок получилась схема, показанная на рисунке 1.

Рисунок 1 Принципиальная схема усилителя постоянного напряжения на базе усилителя ЛАНЗАР.

В качестве нагрузки используется постоянное сопротивление величиной 6 Ом. По мере экспериментов оно будет меняться в ту или иную сторону. Питание усилителя возьмем ±60 В.

Итак, для начала установим необходимый ток покоя и проверим в каких точках какие напряжения.

Рисунок 2 Карта напряжений

Рисунок 3 Карта протекающих токов

Рисунок 4 Карта рассеиваемых мощностей

Как видно из рисунка на транзисторах последнего каскада усилителя напряжения Q5 и Q6 выделяется порядка 1 Вт, следовательно этим транзисторам уже необходим теплоотвод. На предпоследнем каскаде (драйверах Q8 и Q9) даже в режиме молчания выделяется порядка 2 Вт, тут уже однозначно требуется радиатор.

Радиатор охлаждения

Ну а для оконечного каскада радиатор уже просто обязателен, хотя в режиме молчания или без нагрузки размеры корпуса транзистора позволяют рассеивать выделяемое тепло.

Тут же следует отметить, что в качестве оконечного каскада используется две пары транзисторов, включенных параллельно для увеличения выходной мощности усилителя, поскольку одна пара не в состоянии справится, но об этом несколько позже.

Поскольку переменное напряжение представляет из себя меняющее полярность постоянное, то рассмотрим происходящие процессы на примере одной положительной полуволны с контрольными точками 0,5; 1,0; 1,5; 2,0; 2,5 В (величина входного сигнала, рисунок 5).

Рисунок 5 В качестве примера возьмем положительную полуволну входного сигнала с амплитудой 2,5 В

По мере роста входного сигнала к нагрузке прилагается все большее напряжение, следовательно увеличивается протекающий ток и через нагрузку и через оконечные транзисторы.

Поскольку мы используем биполярные транзисторы, то ток коллектора на прямую зависит от тока базы, следовательно чем больший ток требуется пропустить через оконечный транзистор, тем больший ток требуется приложить к его базе.

Этим собственно и занимается драйверный каскад усилителя. Как видно из рисунка 6 по мере роста амплитуды входного сигнала протекающий ток через оконечные транзисторы увеличивается, увеличивается и ток, протекающий через транзисторы предпоследнего каскада, а вот мгновенно рассеиваемая мощность сначала увеличивается, а потом уменьшается.

Тут, пожалуй, следует пояснить почему мощность увеличивается, а затем уменьшается, хотя казалось бы она должна не уклонно расти. Дело в том, что выделяемая на элементе мощность зависит от протекающего через элемент тока и падения напряжения на нем. Да, да это школьный курс физики, тот самый закон Ома.

Рисунок 6 Изменение токов и рассеиваемых мощностей в зависимости о величины входного сигнала

Схемы для наглядности

Для большей ясности рассмотрим простенькую схемку, состоящую из источника питания, сопротивления нагрузки и транзистора, через который собственно и подается напряжение на нагрузку.

Однако в данном случае транзистор будет выполнять роль переменного резистора в качестве движка которого можно подразумевать ток, протекающий через его базу.

Для большей наглядности заменим транзистор резистором R1, сопротивление которого мы и будем менять (рис 7).

Рисунок 7 Принципиальная схема поясняющая рассеиваемые мощности

На рисунке 7 сопротивление регулируемого элемента (R1) равно 1000 кОм, ну что то типа утечки. В этом случае через нагрузку протекают микро токи и на регулирующем элементе рассеиваются микро ватты.

Но стоит уменьшить сопротивление регулирующего элемента до такой степени, чтобы приложить к нагрузке 0,5 В как картина начинает меняться — рисунок 8.

Поскольку к нагрузке прилагается 0,5 В, а напряжение питания составляет 10 В, то на регулирующем элементе падение будет составлять 9,5 В, что собственно и показывает подключенный к выводам регулирующего элемента вольтметр.

Ток через нагрузку и регулирующий элемент будет составлять 50 мА, т.е. 0,05 А. В этом случае, для вычисления выделяемой регулирующим элементом мощности, следует протекающий через него ток (0,05 А) умножить на приложенное к его выводам напряжение (9,5 В). В результате мы получаем, что выделяемая регулирующим элементом будет рассеиваться 0,475 Вт (475 мВт, как показывает симулятор).

Рисунок 8

Далее приложим к нагрузке 1 В. На регулирующем элементе остается 9 В, а протекающий ток составит 0,1 А (рис 9). Выделяемая мощность на регулирующем элементе составит 9 В х 0,1 А = 0,9 Вт (900мВт согласно симулятору). Пока все верно: увеличивается протекающий ток — увеличивается рассеиваемая мощность.

Рисунок 9

Далее приложим к нагрузке 2 В. Падение на регулирующем элементе 8 В, протекающий ток составляет 0,2 А, рассеиваемая мощность 8 В х 0,2 А = 1,6 Вт. (рис 10)

Рисунок 10

Казалось бы, что дальнейшие вычисления не имеют смысла — с увеличением протекающего тока увеличивается и рассеиваемая регулирующим элементом мощность.

Да, все верно, но лишь до тех пор, пока АКТИВНОЕ сопротивление регулирующего элемента не станет равным сопротивлению нагрузки.

В этом случае к нагрузке будет приложено 5 В, протекающий ток составит 0,5 А, на регулирующем элементе и на нагрузке будет рассеиваться по 2,5 Вт (рис 11).

Рисунок 11

Теперь активное сопротивление регулирующего элемента меньше сопротивления нагрузки, приложенное к его выводам напряжение равно 4 В, протекающий ток равен 0,6 А, следовательно рассеиваемая мощность равна 4 В х 0,6 А = 2,4 Вт, т.е рассеиваемая мощность начинает уменьшаться, не смотря на то, что протекающий через регулирующий элемент ток продолжает увеличиваться (рис 12).

Рисунок 12

Для очистки совести откроем даташник на популярные в звукотехнике транзисторы 2SA1943 и 2SC5200 и посмотрим величину напряжения коллектор-эмиттер в открытом состоянии.

Для 2SC5200 эта величина составляет 0,4 В, для 2SA1943 — 1,5 В.

Поскольку последняя величина больше, то ее и попробуем — уменьшим величину активного сопротивления регулирующего элемента до получения падения на нем 1,5 В (рис 13).

Рисунок 13

Из всего выше сказанного следует, что рассеиваемая мощность на регулирующем элементе связана не только с протекающим через нее током, падением напряжения, но и с сопротивлением нагрузки и максимальное тепловыделение происходит в тот момент, когда активное сопротивление регулирующего элемента равно сопротивлению нагрузки.

Снова к усилителю

Ну теперь вернемся к усилителю постоянного напряжения, к рисунку 6. Как видно максимальный ток через транзисторы драйвера и оконечные транзисторы протекает как раз в момент когда входное напряжение составляет 2,5 В при нагрузке 3 Ома. Следовательно транзисторы драйвера должен быть рассчитан на ток не менее 310 мА, а транзисторы оконечного каскада на ток не менее 8,8 А.

Однако не стоит забывать, что реальный усилитель мощности работает на динамическую головку, которая к активному сопротивлению имеет отношение лишь до тех пор, пока диффузор не подвижен.

Как только диффузор головки начинает двигаться динамическая головка перестает быть активной нагрузкой, поскольку начинают сказываться и индуктивность катушки и наводимый в этой катушке ток, когда диффузор по инерции продолжает движение.

Самый примитивный эквивалент динамической головки представлен на рисунке 14.

Рисунок 14 Эквивалент динамической головки.

Как видно в эквиваленте присутствуют и индуктивность и конденсатор, следовательно в моменты, когда диффузор головки разогнан до максимальной скорости происходит смена полярности выходного сигнала мгновенное значение активного сопротивления нагрузки может уменьшиться — в эквиваленте это будет емкость заряженного конденсатора и само индукция дросселя, причем ОЧЕНЬ сильно, и это только в случае когад акустическая система использует один широкополосный динамик, если же используется многополосная АС то активное сопротивление может уменьшится вплоть до 50% в определенные моменты времени.

Ну а поскольку активное сопротивление уменьшилось, то увеличиваются токи через оконечные транзисторы, естественно увеличивая токи своих баз.

Поэтому в данном случае буде целесообразно использовать в качестве драйверов транзисторы с максимальным током коллектора уже не на 310 мА, а на 50% больше, т.е.

на 460-500 мА, ну а если уж обращаться к реальным транзисторам, то это будут транзисторы с током коллектора на 1А. Ток коллектора оконечного каскада приобретает величину уже в 13 А, ближайшая стандартная величина 15 А.

Почему не удваивается мощность? Да потому что токи имеют мгновенное значение, а рассеиваемая мощность гораздо более инерционная и получившихся 135 Вт будут вполне достаточно кристалл транзистора не успеет нагреться до критической температуры.

Когда уровень входного напряжения достиг величины 2,5 В (рис 15). В этом случае на выходе усилителя получается максимально возможное напряжение, поскольку Q5 уже вошел в режим насыщения и дальнейшее увеличение входного напряжения не приведет к росту выходного. Если бы это было в усилителе мощности звукового сигнала, то эта ситуация как раз и называется клиппингом.

Рисунок 15 Карта напряжений при входном напряжении 2,5 В.

На что здесь стоит обратить внимание?

Прежде всего на прилагаемые напряжения к транзисторам, отвечающим на усиление отрицательной полу волны.

Как видно из карты напряжений в момент, когда на выходе максимально возможное положительное напряжение к транзисторам отрицательной полу волны звукового сигнала прилагается отрицательная полярность источника питания и напряжение подаваемое с открытых транзисторов транзисторов положительной полу волны.

Следовательно транзисторы последнего каскада усилителя напряжения Q5, Q6, транзисторы драйверного каскада Q8, Q9 и транзисторы оконечного каскада Q10-Q13 должны быть рассчитаны на напряжение ни как не меньше 120 В и это только критический минимум, поскольку даже не большое увеличение сетевого напряжения и использовании не стабилизированного источника питания заставит транзисторы работать на технологическом запасе, что сводит схему к схемам пониженной надежности.

Поскольку электросети обещают напряжение в сети 220 В ±7%, а в реальности отклонения могут достигать и 10-15%, вот 15% и следует добавить с минимальному значению напряжения используемых транзисторов, т.е. используемые транзисторы должны быть рассчитаны на 138-140 В.

Открываем даташиты на транзисторы 2SA1943 и 2SC5200, которые используются в оконечном каскаде усилителя ЛАНЗАР и смотрим следующие величины:

  • Максимальный ток коллектор-эмиттер . . . . . . . . . . .15 А
  • Максимальное напряжение коллетор-эмиттер . . . 230 В
  • Тепловая мощность коллектора . . . . . . . . . . . . . . . 150 Вт

Правда там оговорка имеется — тепловая мощность при температуре 25°С и рекомендуемая мощность всего 100 Вт с одного транзистора, но как показывает при хороших теплоотводах в качестве номинальных можно использовать максимальные значения, но об этом немного ниже. В данной же схеме эти транзисторы вполне уместны, имеют довольно приличный запас по току и напряжению, а учитывая довольно большой технологический запас ТОШИБОВСКИХ изделий, в этом усилителе их убить будет довольно сложно.

Источник: https://usilitelstabo.ru/shemy-umzch-na-tranzistorah.html

Мощный и качественный самодельный усилитель звука

СХЕМА УМЗЧ

Недавно обратился некий человек с просьбой собрать ему усилитель достаточной мощности и раздельными каналами усиления по низким, средним и высоким частотам.

Подобные усилители до этого не раз уже собирал для себя в качестве эксперимента и, надо сказать, эксперименты были весьма удачными.

Качество звучания даже недорогих колонок не очень высокого уровня заметно при этом улучшается по сравнению, например, с вариантом применения пассивных фильтров в самих колонках.

К тому же появляется возможность довольно легко менять частоты раздела полос и коэффициент усиления каждой отдельно взятой полосы и, таким образом, проще добиться равномерной АЧХ всего звукоусилительного тракта. В усилителе были применены готовые схемы, которые до этого не раз были опробованы в более простых конструкциях.

Структурная схема

На рисунке ниже показана схема 1 канала:

Как видно из схемы, усилитель имеет три входа, один из которых предусматривает простую возможность добавления предусилителя-корректора для проигрывателя винила (при такой необходимости), переключатель входов, предварительный усилитель-тембролок (также трёхполосный, с регулировкой уровней ВЧ/СЧ/НЧ), регулятор громкости, блок фильтров на три полосы с регулировкой уровня усиления каждой полосы с возможностью отключения фильтрации и блок питания для оконечных усилителей большой мощности (нестабилизированный) и стабилизатор для «слаботочной» части (предварительные каскады усиления).

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания.

В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904.

Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах).

Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

Блок фильтров

Схем фильтров, также, при желании можно найти множество, так как публикаций на тему многополосных усилителей сейчас достаточно. Для облегчения этой задачи и просто для примера, я приведу здесь несколько возможных схем, найденных в различных источниках:

— схема, которая была применена мной в этом усилителе, так как частоты раздела полос оказались как раз такие, которые и нужны были «заказчику» — 500 Гц и 5 кГц и ничего пересчитывать не пришлось.

— вторая схема, попроще на ОУ.

И ещё одна возможная схема, на транзисторах:

Как уже писал ваше, выбрал первую схему из-за довольно качественной фильтрации полос и соответствии частот разделения полос заданным. Только на выходах каждого канала (полосы) были добавлены простые регуляторы уровня усиления (как это сделано, например, в третьей схеме, на транзисторах). Регуляторы можно поставить от 30 до 100 кОм.

Операционные усилители и транзисторы во всех схемах можно заменить на современные импортные (с учётом цоколёвки!) для получения лучших параметров схем. Никакой настройки все эти схемы не требуют, если не требуется изменить частоты раздела полос.

К сожалению, дать информацию по пересчёту этих частот раздела я не имею возможности, так как схемы искались для примера «готовые» и подробных описаний к ним не прилагалось.

В схему блока фильтров (первая схема из трёх) была добавлена возможность отключения фильтрации по каналам СЧ и ВЧ. Для этого были установлены два кнопочных переключателя типа П2К, с помощью которых просто можно замкнуть точки соединения входов фильтров — R10C9 с их соответствующими выходами — «выход ВЧ» и «выход СЧ». В этом случае по этим каналам идёт полный звуковой сигнал.

Усилители мощности

С выхода каждого канала фильтра сигналы ВЧ-СЧ-НЧ подаются на входы усилителй мощности, которые, также, можно собрать по любой из известных схем в зависимости от необходимой мощности всего усилителя. Я делал УМЗЧ по известной давно схеме из журнала «Радио», №3, 1991 г., стр.51.

Здесь даю ссылку на «первоисточник», так как по поводу этой схемы существует много мнений и споров по повод её «качественности». Дело в том, что на первый взгляд это схема усилителя класса «B» с неизбежным присутствием искажений типа «ступенька», но это не так.

В схеме применено токовое управление транзисторами выходного каскада, что позволяет избавиться от этих недостатков при обычном, стандартном включении.

При этом схема очень простая, не критична к применяемым деталям и даже транзисторы не требует особого предварительного подбора по параметрам К тому же схема удобна тем, что мощные выходные транзисторы можно ставить на один теплоотвод попарно без изолирующих прокладок, так как выводы коллекторов соединены в точке «выхода», что очень упрощает монтаж усилителя:

При настройке лишь ВАЖНО подобрать правильные режимы работы транзисторов предоконечного каскада (подбором резисторов R7R8) — на базах этих транзисторов в режиме «покоя» и без нагрузки на выходе (динамика) должно быть напряжение в пределах 0,4-0,6 вольт.

Напряжение питания для таких усилителей (их, соответственно, должно быть 6 штук) поднял до 32 вольт с заменой выходных транзисторов на 2SA1943 и 2SC5200, сопротивление резисторов R10R12 при этом следует также увеличить до 1,5 кОм (для «облегчения жизни» стабилитронам в цепи питания входных ОУ). ОУ также были заменены на ВА4558, при этом становится не нужна цепь «установки нуля» (выходы 2 и 6 на схеме) и, соответственно меняется цоколёвка при пайке микросхемы. В результате при проверке каждый усилитель по этой схеме выдавал мощность до 150 ватт (кратковременно) при вполне адекватной степени нагрева радиатора.

Подробнее об этом усилителе всё же рекомендовал бы посмотреть информацию в «первоисточнике», там очень подробно расписаны варианты, принципы построения, настройки и работы.

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме.

Для питания НЧ полосных каналов (левый и правый каналы) — трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания.

Для СЧ и ВЧ каналов — трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

В общем, блок питания может быть и с одним трансформаторм, конечно, но при его соответствующей мощности. Мощность усилителя в целом в данном случае определяется исключительно возможностями источника питания.

Все предварительные усилители (темброблок, фильтры) — запитаны также от одного из этих трансформаторов (можно от любого из них), но через дополнительный блок двуполярного стабилизатора, собранный на МС типа КРЕН (или импортных) или по любой из типовых схем на транзисторах.

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты :-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта 2shemi.ru).

Источник: https://2shemi.ru/moshhnyj-i-kachestvennyj-samodelnyj-usilitel-zvuka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.