ВХОДНЫЕ УЗЛЫ ОСЦИЛЛОГРАФОВ – 4

Входные узлы осциллографов – 4

ВХОДНЫЕ УЗЛЫ ОСЦИЛЛОГРАФОВ - 4

Это окончание темы по входным цепям осциллограффов, предыдущую часть читайте тут. Некоторые вещи относительно цифровых осциллографов стоит пояснить отдельно. При наблюдении осциллограмм можно наблюдать такой эффект. Я его называю ошибкой округления АЦП. За точность термина не поручусь.

Например в Импульсе-5110 при закороченном входе центральная линия вполне чистая, без всякого видимого шума. Сразу приношу свои извинения за качество фото.

Аналогично выглядит и линия развертки Импульса-7735

Это, кстати, говорит о неплохой разводке платы и достаточной фильтрации цепей питания после преобразователей.

Но если мы немного покрутим ручку переменного резистора смещения линии развертки по вертикали, то можем наблюдать, как линия развертки приобретает некую «лохматость». Если прокрутить немного дальше, линия снова становится гладкой. И так несколько раз по высоте дисплея.

Почему так происходит? Дело в том, что аналого-цифровой преобразователь  (АЦП), который собственно и преобразует входной сигнал в цифровую форму для дальнейшей обработки микроконтроллером, мыслит только целыми числами.

Например 8 битный АЦП AD9280  в зависимости от уровня сигнала на входе (допустим при включении на чувствительность от 0 до 5 вольт) разбивает этот диапазон на 256 значений (8 бит).

Т.е. каждая ступенька имеет «вес» примерно 19,5 милливольт, или 0,01953125 вольта. 

Линия в центре дисплея имеет значение 2,5 вольта на входе АЦП и он выдает на микроконтроллер значение 128.

Он не может выдать скажем 128,3 или 128,495. Только целые числа от 0 до 255. И когда значение приближается к переходному уровню, скажем 2,495 вольта, начинают сказываться мелкие помехи, тепловой шум внутри микросхем, наводки и т.п. Которые есть ВСЕГДА.

И значение  на выходе начинает гулять 128, 129, 128, 129… и так далее. Т.е реальное значение напряжения сигнала гуляет совсем незначительно, но АЦП округляет то вверх (чуть больше половины) или вниз (чуть меньше половины).
Дисплей штука тоже сугубо цифровая.

Он не может отобразить только часть пиксела.

Как следствие мы видим вполне себе «лохматую» линию.

Эта лохматость будет у любого цифрового осциллографа. Она неустранима в принципе. Ее можно замаскировать разными методами обработки сигнала. Например выводя на дисплей усредненный сигнал скажем за 10 периодов входного сигнала. В некоторых моделях серьезных цифровых осциллографов эта функция реализована.

Но так можно не всегда. Например если мы исследуем одиночные импульсы, то усредняя сигнал мы его просто не увидим.

Таким образом это явление неустранимо в принципе и считать его недостатком не стоит.

То же самое происходит когда мы рассматриваем сигнал с плоскими вершинами, меандр, например. Верх меандра может быть чистым и ровным, а низ лохматым. Или наоборот. Это зависит лишь от того, попадает ли уровень сигнала в данной точке в зону округления.

Заметность «лохматости» зависит и от размера пиксела. От разрешения дисплея. От разрядности АЦП. Скажем на 12 битном АЦП и дисплеях с большим разрешением, например 320х240 пикселей заметность будет гораздо меньше, чем на Нокиевском дисплее 5110 с его 48 пикселами по вертикали.

Построение входного аттенюатора

Второе, и пожалуй главное, что хотелось бы пояснить, построение входного аттенюатора (делителя). Не все понимают (наблюдение из практики), что входной аттенюатор не создает предыскажения для последующего усилителя, ОН САМ ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИСКАЖЕНИЙ

Завал, всплеск – во многом его “заслуга”. Если посмотреть внешним прибором, что происходит во входных цепях осциллографа, то выяснится, что большая часть искажений появляется именно благодаря входному делителю. А вот конденсаторы в нем как раз и служат для настройки. Убрать все эти скругления и всплески.

Усилители тоже имеют собственные искажения, которые могут быть заметны на осциллограмме, но их гораздо меньше, при правильно построенном усилителе.

Отсюда вывод – входной аттенюатор не может быть полноценным если КАЖДАЯ ЕГО СТУПЕНЬ не имеет собственных цепей частотной коррекции.

Т.е. входной аттенюатор, построенный по схеме

(Я приводил ее ранее) Может быть нормально отстроен (пример на картинке)

(углы прямоугольных импульсов достаточно ровные) только на одном из диапазонов (положений переключателя S1)

На двух других при этом мы будем наблюдать это

Или это

Проблема этой схемы в том, что конденсатор С1, установленный параллельно резистору R1, будет настроен на одно конкретное положение переключателя.

Отстраивать его заново каждый раз когда мы переключаем диапазоны никто не станет да и неудобно это. Не говоря уж о том, что его величина может изменяться на два порядка, т.е. без перепайки не обойтись.

Не готов полностью исключить, что в каких то случаях нормальная настройка возможна, но мне это не удавалось. Ни теоретически (на симуляторах), ни практически.

Кроме того из опыта, входные аттенюаторы построенные по одной схеме, с использованием деталей из одной партии, работающие на ОУ одного типа, вовсе не обязательно будут иметь одинаковую емкость конденсаторов частотной коррекции.

Т.е. рассчитывать, что именно вам вот сейчас повезет не стоит.

Разная емкость монтажа, немного разные параметры ОУ (технологический разброс есть всегда), разные щупы для осциллографа (Это тоже важно упомянуть. Осциллограф надо настраивать с «родными» щупами).

Поэтому единственно нормальный путь для построения входных цепей это следовать принципам, заложенным в схему 2

Важное отличие состоит в том, что переключается не только нижний резистор делителя, нижнее плечо, как я обычно говорю, но и верхнее.

Т.е. требуется переключатель с ДВУМЯ ГРУППАМИ КОНТАКТОВ. И по сути это несколько разных и независимых друг от друга делителей. И мы переключаем их полностью, исключая таким образом влияние друг на друга.

И только этот способ способен гарантированно обеспечить возможность настройки в любом положении переключателя.

Те, кто читал предыдущие части моих обзоров наверное удивлены, для чего я повторяю часть картинок и часть информации. 

А дело в том, что уже столкнулся с использованием ущербных схем входного делителя в самоделках людьми, точно прочитавшими предыдущие части, специально этому посвященные.

Ущербный входной аттенюатор уже погубил несколько серьезных и интересных разработок, которые мне попадались. Он погубил и некоторые из выпускаемых промышленностью осциллографов начального уровня для радиолюбителей. Так быть не должно.

Важно уяснить, нормальный входной аттенюатор ОБЯЗАТЕЛЬНО имеет переключение с двумя группами контактов.

Автоматический расчет напряжений входных сигналов

У меня на схемах изображены механические переключатели. А как же быть, если при построении собственной схемы хочется обеспечить автоматический расчет напряжений входных сигналов? Можно реализовать и такое. 

Возможные пути:

  1. Реле с двумя группами контактов во входном делителе. Естественно со своими цепями коммутации (транзисторы, резисторы, диоды). Управление от микроконтроллера. На три диапазона требуется три реле, работающих по очереди. Соответственно еще минимум пара реле на переключение промежуточного делителя. Эти два реле уже могут иметь одну группу контактов.
  2. Реле с одной группой контактов на верхнее плечо делителей. Нижнее плечо можно переключать мультиплексором. Промежуточный делитель тоже.

Итого требуется три порта МК на управление реле. Еще два порта на управление реле промежуточного делителя.

Мультиплексор как правило управляется тремя портами (выходами) микроконтроллера.

Одна из проблем такого решения состоит в том, что электромагнитные реле имеют некоторые габариты, да еще и кушают немалый ток, что делает такую схему малопригодной под батарейное питание.

Да и сильно простой ее уже не назовешь. И микроконтроллеры уже требуются с большим количеством портов ввода-вывода.

Это все неплохо вписывается в настольные варианты осциллографов с питанием от сети, но гораздо сложнее использовать в малогабаритных вариантах с батарейным питанием.

Именно из таких соображений я и считаю целесообразным для радиолюбительских конструкций осциллографов начального уровня применять механические переключатели и производить пересчет напряжения сигнала ориентируясь по положению переключателей в уме.

Да, это менее удобно. Но это единственный путь сохранить возможность нормальной настройки и работы осциллографа во всем диапазоне доступных ему сигналов при сохранении относительной простоты схемы.

Мне понятно стремление осциллографостроителей к автоматизации. И на первом этапе обычно кажется, что «Как нибудь прорвусь. Как то настрою. Ну пусть и с искажениями…» Сам был такой когда-то.

Поверьте, входная часть осциллографа в значительной мере  определяет его рабочие качества.

И если строите прибор не только на «поиграться/похвалиться», а хотите иметь верного помощника – не упрощайте входной аттенюатор.  Именно ДВЕ группы контактов.

Все сказанное в полной мере справедливо и при выборе готовых схем, кит-наборов и готовых конструкций. Осциллограф не столь простой и дешевый прибор, чтобы стоило заведомо снижать его рабочие качества, лишь немного упростив схему входных делителей.

Еще один вопрос, которому стоит уделить внимание

Далеко не все операционные усилители, которые можно использовать в схемах осциллографов имеют чистый ноль на входе. 

У некоторых присутствует некий постоянный потенциал. Он как правило невелик по величине, но сам факт его наличия вызывает очень неприятное явление – при переключении входного аттенюатора линия  развертки смещается. И как правило весьма сильно, вплоть до того, что уходит в зашкаливание.
ОУ с чистым нулем на входах отыскать не всегда просто. Как же быть?

Один из возможных путей отсечь постоянную составляющую на входе, используя разделительные конденсаторы. Для осциллографа не самый лучший выход.

Другой выход был озвучен пользователем по ником «apeks» и предложена схема в теме на форуме. Фрагмент схемы:

Обратите внимание на резисторы R10 и R18. Их назначение – скорректировать потенциал на входе ОУ, тем самым устранив скачки линии развертки при переключении входного делителя.

Этот способ сильно расширяет номенклатуру ОУ пригодных для использования в схемах осциллографов. Первое время я сомневался, будет ли результат стабильным во времени, при изменении температуры, влажности и т.п. 

Но реализовав два экземпляра таких усилителей в Импульсе-5110 и Импульсе-7735, я успокоился. Отрегулировав схему один раз, больше к регулировке возвращаться не приходилось.

Справедливости ради должен заметить, что идеальную компенсацию получить достаточно сложно, и при изменении условий среды (прогреве цепей питания осциллографа) незначительное смещение линии развертки все же наблюдается, но оно совсем невелико и проблем не возникает.

Но при включении осциллографов появился некий эффект (почти как в ламповых) – требуется некоторое время на прогрев, в течение которого линия немного уплывает.

Время не велико. В пределах двух минут. Да и само смещение тоже не так значительно, около половины деления (дисплей разбит на 5 делений по высоте). Каких либо сложностей из-за этого эффекта не ощутил. Реально может мешать только при исследованиях с постоянной составляющей. Но тогда проще подождать прогрева и продолжать исследования спокойно.

Связываю дрейф линии с неидеальной температурной стабильностью примененных стабилизаторов постоянного напряжения (у меня AMS1117-5 и инвертор напряжения на  MC34063).

Видимо какой то из них, или оба, незначительно меняют напряжение при прогреве рабочим током. И возникает некий разбаланс  питающих ОУ напряжений.

Считаю этот недостаток приемлемой платой за возможность использовать «левые» операционные усилители.

Естественно, данную схему входного усилителя можно использовать и для ОУ с чистым нулем на входе.  Если вам повезло отыскать такой, то эти два резистора можно просто не устанавливать. Схема будет работать и без них.

Обратное тоже возможно, эти резисторы можно добавить в схемы, изначально не предназначенные для использования ОУ с паразитным потенциалом на входе.

Вопросы по тематике статьи можно обсудить в специальной теме конференции. Всем успеха! Тришин А.О. Г. Комсомольск-на Амуре. 2018 г.

   Форум

   Обсудить статью Входные узлы осциллографов – 4

Источник: https://radioskot.ru/publ/izmeriteli/vkhodnye_uzly_oscillografov_4/15-1-0-1393

Сверхскоростная осциллография вчера, сегодня и завтра

ВХОДНЫЕ УЗЛЫ ОСЦИЛЛОГРАФОВ - 4

Заказать этот номер

2010№4

Статья представляет собой обзор осциллографов, начиная с первых осциллоскопов Фердинанда Брауна (1897 г.) на электронно-лучевой трубке (ЭЛТ) и заканчивая современными моделями приборов ведущих компаний мира.

Введение

Одним из первых промышленных элек-тронных осциллографов был прибор 224-A фирмы Dumond (США) на ЭЛТ с электростатическим отклонением и с ламповым усилителем с полосой исследуемых частот от 20 Гц до 2 МГц. Он легко преодолел частотный барьер в 1 МГц.

В годы Второй мировой войны это был прорыв в области анализа высокочастотных сигналов.

В нашем веке к сверхскоростным осциллографам, пожалуй, стоит относить приборы с временем нарастания переходной характеристики менее 1 нс и полосой усиливаемых частот выше 300 МГц.

Осциллограф 224-A был выпущен в 1943 г. и стоил $150. Ныне этот прибор можно приобрести почти как антиквариат за $2740 [2]. Заметно позже (в 1956 г.) компания Tektronix выпустила осциллограф с ламповым усилителем с распределенным усилением с полосой от 0 до 24 МГц стоимостью $1725 (в наше время — $17 780) [2]. Эта фирма впервые применила двойную развертку для создания «лупы времени».

В 1960-е и 1970-е годы осциллография перешла на транзисторную и микроэлектронную элементную базу. Появились первые транзисторные осциллографы с полосой частот в сотни МГц [3]. Получили быстрое развитие стробоскопические осциллографы, уверенно преодолевшие частотный барьер

в 1 ГГц [5-7]. Затем (конец 1980-х — начало 1990-х) появились (и в наше время интенсивно развиваются) цифровые запоминающие осциллографы (ЦЗО), в том числе с полосой частот до 20 ГГц и выше [9-12]. В 2005 г. стробоскопические осциллографы достигли предела в 100 ГГц. Стоимость лучших из таких приборов с опциями в наши дни достигает $200 000.

Типы сверхскоростных осциллографов

В настоящее время сверхскоростные осциллографы можно разделить на пять типов:

  • аналоговые осциллографы с подачей сигнала прямо на систему вертикального отклонения луча ЭЛТ;
  • осциллографы на основе широкополосной ЭЛТ с усилителями сигналов;
  • цифровые запоминающие осциллографы реального времени;
  • стробоскопические осциллографы;
  • оптикоэлектронные осциллографы с лазерным сканированием.

В таблице приведены данные о полупроводниковых приборах, для исследования которых необходимы сверхскоростные осциллографы.

Таблица. Типичные времена нарастания и полосы частот осциллографов, необходимые для исследования устройств на интегральных микросхемах

Тип интегральнойТипичное времяТипичная полоса частот
микросхемынарастанияосциллографа
TTL2 нс175 МГц
CMOS1,5 нс230 МГц
GTL1 нс350 МГц
LVDS400 пс850 МГц
ECL100 пс3,5 ГГц
GaAs40 пс8,75 ГГц
Si-Ge гетеропереходныеменее 1 псболее 350 ГГц

Обычные осциллографические электронно-лучевые трубки (ЭЛТ)

Аналоговые осциллографы строились на основе ЭЛТ с электростатическим отклонением электронного луча — рис. 1 [1-4]. Для получения временной зависимости сигнала канала Y в канал X подается пилообразное напряжение от генератора развертки. Есть и канал Z управления яркостью луча.

Рис. 1. Осциллографическая ЭЛТ с электростатическим отклонением

Важнейшим параметром ЭЛТ является чувствительность по отклонению по вертикали — в вольтах на 1 мм (или см).

При этом нужно, чтобы электронный луч при отклонении не попадал на пластину, к которой он приближается, иначе луч поглотится ею и не попадет на покрытый люминофором экран.

Поэтому предельный угол отклонения луча в ЭЛТ обычно не превышает 15°, и осциллографическая ЭЛТ, с размером экрана 10 см по диагонали и выше, оказывается довольно громоздкой и имеет длину до полуметра. К тому же она требует питания от высоковольтных источников.

Фундаментальные ограничения ЭЛТ в регистрации быстрых процессов

Вертикальную составляющую скорости, с которой луч чертит изображение синусоиды с амплитудой A и частотой /на экране ЭЛТ, можно вычислить как:

Тогда максимальная графическая скорость, с учетом скорости движения луча при горизонтальной развертке νz, будет равна:

В общем случае регистрации графическая скорость равна:

где σ — чувствительность трубки по вертикальному отклонению (в см/В).

Максимальная графическая скорость при регистрации видеоимпульса имеет место на его фронтах, где максимальна скорость изменения сигнала. Расчеты показывают, что при размере осциллограммы по вертикали около 1 см и минимально возможной яркости следа от луча максимальные частоты регистрации синусоидального сигнала составляют около 3 ГГц.

На деле частотные ограничения наступают намного раньше из-за емкости пластин C (единицы-десятки пФ) и индуктивности подводящих проводов L (десятки нГ), образующих колебательный контур (рис. 2).

Рис. 2. Эквивалентная схема тракта отклонения

Если на вход такого контура подать идеальный перепад напряжения с уровнем E, то временная зависимость напряжения на C будет иметь вид:

где α = R/2L и δ = (1/LC-R2/4L2)1/2.

Расчеты показывают, что эта зависимость может иметь значительный выброс при малых R. При α/δ = 1 этот выброс составляет не более 4% от амплитуды перепада, что является вполне удовлетворительным показателем. Для этого величину R нужно выбирать согласно формуле:

Если воспользоваться известным значением резонансной частоты контура:

то можно выразить значение R через резонансную частоту контура, определяющую предельную частоту тракта отклоняющей системы:

Нетрудно доказать, что время достижения напряжением u(t) значения E составит:

t = 3πRC/4 = 2,2RC. (7)

Данное значение обычно и принимают за время установления отклоняющей системы с оптимальной (Гауссовой) АЧХ.

Эти расчеты (справедливые также для канала X) и учет конечной скорости движения электронов в пучке показывают, что у обычной ЭЛТ максимальная частота регистрируемых сигналов в канале Y не превышает 300 МГц, а время установления ограничено величиной не менее 1 нс. Таким образом, обычные ЭЛТ просто непригодны для сверхскоростных осциллографов.

Осциллографические трубки специального назначения

Существенное повышение полосы частот осциллографических трубок было достигнуто при разработке широкополосных отклоняющих систем в виде линий передачи с бегущей волной (рис. 3).

Слева показаны входы системы, справа — выходы, подключаемые к согласующим резисторам. Разделение емкости пластин и индуктивностей проводов повышает граничную частоту отклоняющей системы.

Были созданы особо широкополосные отклоняющие системы на основе распределенных коаксиальных линий передачи.

Рис. 3. Широкополосная отклоняющая система в виде линии передачи

В таких ЭЛТ нужно обеспечить согласование линий на входе и на выходе. Для этого сопротивления источника сигналов и нагрузки (включаемой на конце линии) выбираются равными волновому сопротивлению линий:

Здесь L1 и C1 — значения индуктивности и емкости одной секции для линий с сосредоточенными параметрами или погонные (на единицу длины) — для линии с распределенной постоянной.

Обычно волновое сопротивление выбирается из диапазона от 50 до 500 Ом. Уменьшение его расширяет полосу частот отклонения, но затрудняет получение нужного уровня выходных напряжений усилителей.

Задержка сигнала во времени у таких линий равна:

В СССР выпускались трубки 10Л0101М и 13Л0101М с отклоняющими системами в виде линий передачи, дожившие до наших дней. Они позволяли наблюдать сигналы с частотами до 1 ГГц. Трубки 13Л0102М с отклоняющей системой на основе распределенных линий передачи обеспечивали возможность просмотра процессов с частотами до 3 ГГц.

Дальнейшее усовершенствование ЭЛТ привело к созданию трубок с последующим ускорением луча после прохождения отклоняющих систем, например, с помощью рассеивающей сетки, установленной на пути выхода электронного пучка из отклоняющей системы [1-4].

Это позволило довести чувствительность ЭЛТ до 3-5 В/см. Благодаря этому стало возможным применение широкополосных транзисторных усилителей. Осциллографы на ЭЛТ с рассеивающей сеткой выпускались фирмами CRT (Франция) и Tektronix (США).

Минус этой конструкции ЭЛТ — ухудшение фокусировки.

Сверхскоростные осциллографы без усилителей

В СССР в 1960-70-е годы были созданы уникальные высокочувствительные ЭЛТ с послеотклонением луча, фокусируемого с помощью триплета квадрупольных линз [4].

Такая серийная трубка 10Л0102М была применена в советском осциллографе С7-10А (С1-61) без усилителя с полосой частот 0-1,5 ГГц и чувствительностью по вертикали 1 или 0,5 В/см. Максимальная скорость развертки составляла 2,5 нс/см.

Прибор имел большие габариты (345·490·880 мм) и массу 70 кг (!). Потребляемая мощность — 700 ВА. Он широко применялся в исследованиях в области ядерной и СВЧ-техники.

Затем была создана ЭЛТ 10ЛО105А с полосой частот усиливаемых сигналов уже до 5 ГГц. Она стала основой нашего «последнего из могикан» — осциллографа С7-19 с подачей исследуемых сигналов прямо на отклоняющую систему ЭЛТ и с чувствительностью 1,7 В/см. Скорость фотозаписи у прибора близка к скорости света и достигала 250 000 км/c.

Прибор обеспечивал время нарастания переходной характеристики 70 пс при входном сопротивлении 50 Ом. Он имел регулируемую задержку ±2 нс и задержку запуска развертки 40 нс. Рабочая часть экрана — 4·6 дел (1 дел — 10 мм). Потребляемая мощность — 170 ВА, масса прибора — 30 кг, габариты 488·214·655 мм.

Разработка прибора была большим достижением.

Спецификой применения таких приборов была необходимость подачи сигнала на вход через линию задержки — обычно в виде бухты коаксиального кабеля. Иначе из-за задержки запуска развертки фронт импульсов не будет виден на экране. Единственной возможностью запоминания осциллограмм является их фотографирование с помощью специальных фотоприставок.

Переход к осциллографам с транзисторными усилителями

В 60-х годах XX века окончательно сформировался переход элементной базы большинства осциллографов на транзисторы вместо ламп.

Это было время бурного расцвета отечественной микроэлектроники, работающей на оборонные заказы и фундаментальные исследования. Для развития науки и техники тех лет требовались крупные и обширные научные разработки.

Осциллографы стали одними из первых инструментов, которые были широко востребованы для промышленности и науки.

Были созданы осциллографы на специальных запоминающих ЭЛТ. Но они оказались чрезмерно сложными и дорогими. Номенклатура приборов была узкой и широкого применения запоминающие осциллографы так и не нашли. Их сменили цифровые запоминающие осциллографы (ЦЗО).

Требования к транзисторным усилителям осциллографа

В осциллографах применяются усилители постоянного напряжения (тока) без спада усиления в области низких частот. Для количественной оценки частотных искажений вводится понятие граничной частоты. Это частота, при которой модуль коэффициента усиления K(w) уменьшается до значения KQ/V2 ≈ 0,7К0, где К0 — коэффициент усиления на нулевой частоте.

Для обычного одиночного резисторного каскада с интегрирующей RC-цепью на выходе время нарастания и спада импульсов tφ = 2,2RC. В то же время граничная частота /В = 1/2πRC. Отсюда можно найти:

Эта простая формула довольно точно описывает соотношение между временем нарастания переходной характеристики и верхней граничной частотой АЧХ многокаскадного усилителя. В связи с этим формула (10) является одной из важнейших в осциллогра

фии и служит основой для определения времени нарастания и спада переходной характеристики осциллографа в области малых времен в целом, на уровнях отсчета 0,1 и 0,9. Видимое на экране осциллографа время нарастания перепада с длительностью tИ определяется как:

Принципы построения генераторов развертки

Генератор развертки аналогового осциллографа служит для выработки линейно-изменяющегося напряжения развертки, которое преобразуется усилителем канала X и используется для перемещения луча по горизонтали. Коэффициент нелинейности пилообразной части напряжения развертки

обычно имеет значение КН

Источник: https://www.kit-e.ru/articles/oscillograph/2010_04_142.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.