ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Содержание

Осциллограф своими руками: несложные цифровые модели и схемы по их сборке и настройке

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Осциллограф это прибор, помогающий увидеть динамику колебаний. С его помощью можно диагностировать различные поломки и получать необходимые данные в радиоэлектронике. Раньше применялись осциллографы на транзисторных лампах. Это были весьма громоздкие приборы, которые подключались исключительно к встроенному или разработанному специально для них экрану.

Сегодня приборы для снятия основных частотных, амплитудных характеристик и формы сигнала представляют собой удобные портативные и компактнее устройства. Часто их выполняют как отдельную приставку, подключающуюся к компьютеру. Этот манёвр позволяет убрать из комплектации монитор, существенно снизив стоимость оборудования.

Как выглядит классический прибор можно увидеть, рассмотрев фото осциллографа в любой поисковой системе. В домашних условиях также можно смонтировать это устройство, используя недорогие радиодетали и корпуса с другого оборудования для более презентабельного вида.

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.

Можно:

  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

В конструктор входит схема простого осциллографа своими руками, а цена снижается за счет оплаты только себестоимости радиодеталей. В этой категории также необходимо различать более дорогие и простые по комплектации и функционалу модели.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.

Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

Облегчает работу наличие практически на всех деталях и самой плате соответствующей маркировки, что действительно превращает процесс в собирание детского конструктора взрослым. На схемах и инструкции хорошо видно все нужные данные и можно разобраться, даже не владея иностранным языком.

На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел — 5В / Div (1 — 2 — 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div — 50s / Div (1 — 2 — 5);
  • Точность замеров: 12 бит.

Пошаговая инструкция сборки конструктора DSO138

Следует рассмотреть более детально подробные инструкции для изготовления осциллографа данной марки, ведь аналогичным образом осуществляется сборка других моделей.

Стоит отметить, что в данной модели плата поставляется сразу с впаянным 32-битным на M3 ядре микроконтроллере марки Cortex™. Работает он два 12-битных входа с характеристикой 1 μs и работает в максимальном частотном диапазоне до 72 МГц. Наличие этого девайса уже вмонтированным несколько облегчает задачу.

Шаг 1. Удобнее всего начинать монтаж с smd компонентов. Нужно учитывать правила при работе с паяльником и платой: не перегревать, держать не дольше 2 с, не смыкать между собой разные детали и дорожки, пользоваться паяльной пастой и припоем.

Шаг 2. Припаять конденсаторы, дросселя и сопротивления: нужно вставлять указанную деталь в отведенное на плате для нее место, отрезаем лишнюю длину ножки и запаиваем на плате. Главное не перепутать полярность конденсаторов и не сомкнуть паяльником или припоем соседние дорожки.

Шаг 3. Монтируем оставшиеся детали: переключатели и разъемы, кнопки, светодиод, кварц. Особенное внимание следует уделить стороне диодов и транзисторов. Кварц имеет металл в своем строении, потому нужно обеспечить отсутствие прямого контакта его поверхности с дорожками платы или позаботиться о диэлектрической подкладке.

Шаг 4. 3 разъема припаиваются к плате дисплея. После завершения манипуляций с паяльником нужно плату промыть спиртом без вспомогательных средств – никаких ваток, дисков или салфеток.

Шаг 5. Просушить плату и проверить насколько качественно была проведена пайка. Прежде, чем подсоединить экран, нужно припаять две перемычки к плате. В этом пригодятся имеющиеся откушенные выводы деталей.

Шаг 6. Для проверки работы нужно включить прибор в сеть с током от 200 мА и напряжением 9 В.

Проверка заключается в снятии показателей с:

  • Разъема 9 В;
  • Контрольной точки 3,3 В.

Если все параметры соответствуют нужным значениям, нужно отключить прибор от питания и установить JP4 перемычку.

Ша г 7. В 3 имеющихся разъему нужно вставить дисплей. К входу нужно подключить щуп для осциллографа, своими руками провести включение питания.

Результатом правильной установки и сборки станет появление на дисплее его номера, типа прошивки, ее версии и сайта разработчика. Спустя несколько секунд можно будет наблюдать синусоидные волны и шкалу при выключенном щупе.

Приставка для компьютера

При сборке этого простого прибора понадобится минимальное количество деталей, знаний и навыков. Принципиальная схема очень простая, разве, что нужно будет изготовить самому плату для сборки прибора.

Размеры приставки к осциллографу своими руками будет примерно как коробок для спичек или немножко больше, поэтому лучше всего использовать такого размера пластиковую емкость или бокс от батареек.

Поместив в него собранный прибор с готовыми выходами, можно приступать к организации работы с монитором компьютера. Для этого следует скачать программы «Осциллограф» и «Soundcard Oscilloscope». Можно протестировать их работу и выбрать ту, что понравилась больше.

Подключенный микрофон также сможет ретранслировать на подключенный осциллятор звуковые волны, программа будет отражать изменения. Подключается такая приставка к микрофонному или линейному входу и не требует никаких дополнительных драйверов.

Фото осциллографов своими руками

Источник: http://tytmaster.ru/oscillograf-svoimi-rukami/

Делитель напряжения для осциллографа своими руками – Справочник металлиста

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Делитель напряжения. Онлайн расчет. Применение на примере осциллографа (10+)

Делитель напряжения

Оглавление :: ПоискТехника безопасности :: Помощь

Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях.

О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить.

В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.

Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.

Здесь можно почитать про схемы для выполнения математических операций над сигналами.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Ознакомьтесь также с расчетом резисторно — конденсатороного (RC) делителя напряжения.

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно.

Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя.

Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В.

Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

Расчет резистивного делителя напряжения

[Напряжение на выходе, В] = [Напряжение питания, В] * [Сопротивление резистора R2, Ом] / ([Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом])

Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано.

[Входное сопротивление делителя, Ом] = [Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом]

Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом] = [Сопротивление резистора R1, Ом] + 1 / (1 / [Сопротивление резистора R2, Ом] + 1 / [Сопротивление нагрузки, Ом])

[Эквивалентное выходное сопротивление делителя, Ом] = 1 / (1 / [Сопротивление резистора R1, Ом] + 1 / [Сопротивление резистора R2, Ом])[Коэффициент ослабления сигнала] = [Сопротивление резистора R2, Ом] / ([Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом])[Действующее / мгновенное / амплитудное напряжение на выходе делителя, В] = [Коэффициент ослабления сигнала] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В]

Эта формула верна, если ток нагрузки делителя равен нулю.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал.

Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг.

Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.

Емкость шунтирующего конденсатора определяется исходя из того соображения, что отношение модуля сопротивления переменному току шунтирующего конденсатора к модулю сопротивления переменному току входной емкости осциллографа должно быть равно отношению сопротивлений резисторов R1 и R2. А модуль сопротивления переменному току обратно пропорционален емкости конденсатора.

[Емкость шунтирующего конденсатора, пФ] = [Входная емкость осциллографа, пФ] * [Сопротивление резистора R2, Ом] / [Сопротивление резистора R1, Ом]

(читать дальше…) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. .

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Источник: https://ssk2121.com/delitel-napryazheniya-dlya-ostsillografa-svoimi-rukami/

Поиск данных по Вашему запросу:

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Ссылка на товар на сайте Таобао. Запомнить меня. Повторите пароль. Введите цифры и буквы. Ваш e-mail.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Делитель 20:1 для осциллографа (аттенюатор сигнала)

Самодельные аттенюаторы

Регистрация Вход. Ответы Mail. Вопросы – лидеры Перестал работать Mi band 4 1 ставка. Роботы уничтожат ваши рабочие места? А разве понятие “эфир” можно всерьёз рассматривать в электронике? Задача по физике 1 ставка.

Провод КСПВ, вопрос к электрикам 1 ставка. Лидеры категории Антон Владимирович Искусственный Интеллект. Кислый Высший разум. Вопрос про аттенюатор в осциллографе Ren Nimov Знаток , на ании 6 лет назад Ребят, помогите разобраться, написано что это за аттенюаторы?

А тут это зачем? Я подумал, может, когда подаем большой сигнал скажем в 60 вольт, то его усиливать то невозможно и нужно выводить на экран ещё, поэтому эти делители и делят напряжение, но вот как? Голосование за лучший ответ. Одним и тем же осциллографом хочется измерять и 10 милиВольт, и 10 Вольт, и Вольт, и чтобы это помещалось на экране.

Допустим у нас максимальная чувствительность осциллографа 10 милиВольт на сантиметр. Алексей Шуплецов Оракул 6 лет назад Аттенюатор-это обычный резистивный делитель напряжения. Понижает входной сигнал в определённое кол-во раз. Похожие вопросы. Также спрашивают.

Осциллограф

Чувствительность может быть уменьшена в определенное известное число раз в зависимости от установки входного аттенюатора и ручки регулировки усиления канала. Исследуемый сигнал поступает на вход У и подается непосредственно или через конденсатор на входной аттенюатор , с помощью к-рого выбирают коэф.

Конденсатор не пропускает к усилителю постоянную составляющую сигнала. Следующим элементом входных цепей канала Y, конструктивные особенности которого играют большую роль, является входной аттенюатор. В общем виде такой аттенюатор представляет сабой компенсированный активно-емкостный делитель.

Осциллограф С9 – 1 выполнен в унифицированном корпусе и состоит из следующих основных устройств: входного аттенюатора ; усилителя вертикального отклонения; согласующего фильтра; схемы радиочастотных фильтров; схемы фиксации видеосигнала по уровню синхроимпульсов; входных эмиттерных повторителей; синхронизатора; генератора развертки; усилителя X; усилителя У; электронно-лучевой трубки; калибратора амплитуды и длительности и узла питания. Так же, как и в преселекторе, компаратор ПУ преобразователя осуществляет автоматическую установку необходимого ослабления встроенного входного аттенюатора для того, чтобы уровень сигнала на выходе тракта находился в нормализованном диапазоне.

Про этот аттенюатор-делитель была речь в обзорах — он позволяет снимать осциллограммы до В с делением Цена по акции $ (На Али.

Аттенюатор 40 дБ RIGOL RA5040K для осциллографов и генераторов

Народ, покритикуйте вх. Вобщем ничего особенного, всё самое обычно: входной компенсатор, делитель напряжения на , потом усилитель и в конце смещатель сигнала по вертикали. Немного смущает Спасибо заранее.

После высокоомного делителя на R5,R6 во входном аттенюаторе сразу низкоомная нагрузка в виде делителя на R8-R12, что сразу ослабит сигнал, здесь необходим усилитель с низкоомным выходом, если частота осциллографа небольшая до МГц можно просто поставить повторитель на ОУ, обычно ставят параллельно 2 усилителя на полевике для высокой частоты и на ОУ для низкой, потом складывают. Можно тогда обойтись без повторителей и других дополнений? Лучше не маяться дурью с входным усилителем на одной микросхема, а применять проверенный временем гибридный каскад на полевике и операционнике. Возможны некоторые отличия в реализации, но эта схема до Мгц работает с известным входным сопротивлением.

Как сделать цифровой осциллограф из компьютера своими руками?

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются. Рекомендуем установить один из следующих браузеров: Firefox , Opera или Chrome. Аннотация Н.

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: “Какой самый главный прибор на вашем рабочем месте? И это действительно так.

Входные узлы самодельных осциллографов

Этот обзор предназначен для людей, ставящих своей целью построение самодельных осциллографов низкого и среднего уровней сложности. Как правило цифровых, благо современная элементная база микроконтроллеры позволяют делать их не слишком сложными. Но и для аналоговых осциллографов многое из нижесказанного вполне применимо.

Данный обзор суммирует опыт, приобретенный мной при пробах и изготовлении более десяти примерно 15 осциллографов. Схемотехника построения осциллографов может быть самой различной, поэтому данный обзор не претендует на бесспорность и отражает лишь мой взгляд и мой опыт.

Для многих радиолюбительских задач считаю, что осциллограф должен позволять рассматривать сигналы с уровнем от милливольт, до нескольких десятков вольт.
Китайский кит осциллограф DSO можно по праву считать первым общедоступным недорогим осциллографом начального уровня.

By harvester , August 3, in Измерительная техника. К тому же, четких пределов напряжений в инструкции не содержится. Теоретически он на до вольт.

О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры.

В статье рассказывается также о том, как можно измерить входной и выходной импеданс и как рассчитать аттенюатор для виртуального осциллографа.

Как изготовить кабель-щуп для низкочастотного виртуального осциллографа? Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

В осциллографе исследуемый электрический сигнал подается через канал вертикального отклонения на вертикально отклоняющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляется напряжением горизонтальной развертки.

Рис Архитектура параллельной обработки информации цифрового люминесцентного осциллографа DPO.

В противоположность архитектуры цифровых запоминающих и цифровых люминесцентных осциллографов, архитектура осциллографов цифровой выборки имеет прямо противоположное расположение аттенюатора и усилителя, а также и пробоотборного моста, как это представлено на рис.

Выборка входного сигнала происходит перед проведением какого-либо усиления или ослабления.

Усилитель с узкой полосой пропускания может быть задействован после пробоотборного моста, поскольку сигнал уже был конвертирован на более низкую частоту посредством забора проб, что в итоге значительно увеличивает полосу пропускания осциллографа. Однако, за широкую полосу пропускания приходится платить тем, что динамический диапазон осциллографов с цифровой выборкой ограничен. Поскольку перед заборником проб отсутствуют аттенюатор или усилитель, то нет возможности соизмерить вход.

Новокузнецк, Кемеровская обл. Логин: Пароль Забыли? Доработки осциллографа DSO — аттенюатор до V, оформление корпуса, литиевая батарея.

Источник: https://all-audio.pro/c16/instruktsii/attenyuator-dlya-ostsillografa.php

Осциллограф из компьютера – самодельный цифровой USB-осциллограф из компьютера, ноутбука или звуковой карты своими руками, лучшие программы

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Приобретение дорогостоящего осциллографа может быть неподъемной задачей для начинающего радиолюбителя. Различные приставки к компьютеру и соответствующие программы позволяют заменить устройство и сделать осциллограф из своего компьютера. Кроме экономии средств, появляется возможность сохранить данные измеряемого сигнала на компьютере, и автоматизировать вычисления параметров.

Программы, эмулирующие работу осциллографа

Обработкой сигналов, поступающих на вход компьютера или ноутбука занимаются виртуальные осциллографы. Эти программы имеют интерфейс, схожий с экраном реального осциллографа. Часть приложений предназначена для работы с устройствами на основе звуковых карт, другие взаимодействуют с USB-осциллоскопами.

Программы, работающие через аудиовхода:

Софт для USB-осциллографов:

  1. Aktakom OscilloscopePro.
  2. Simplescope.

Все виртуальные приборы являются двухканальными, снабжены генераторами частот, анализаторами. Проведенные измерения и осциллограммы можно сохранять на ПК. Обычно их не нужно инсталлировать. После распаковки архива и запуска программы появляется интерфейс реального осциллографа с регуляторами настроек.

Методы работы

Компьютер — цифровое устройство, поэтому для измерения аналогового параметра необходимо перевести сигнал в дискретный вид. Для этого используется АЦП — аналогово-цифровой преобразователь. Для вывода данных применяют ЦАП — цифро-аналоговый преобразователь.

Звуковая карта компьютера дискретизирует входящие аналоговые сигналы, подключаемые к входам LINE IN и MIC.

Поэтому аудиоплату можно использовать в качестве АЦП для подачи на компьютер или ноутбук измеряемого сигнала. Так как человек слышит звук в диапазоне 4Гц- 20кГц, то соответственно и аудиокарта работает в низкочастотном спектре. Полученный осциллограф также будет работать в указанном диапазоне.

Еще одним недостатком в работе «звукового» осциллоскопа является ограничение по напряжению, подаваемому на вход. Оно должно быть в пределах 0,5 В для входа MIC и до 2 В для LINE IN. Подключение сигнала амплитудой более 2В выведет из строя звуковую карту или компьютер.

Из-за конструкционных особенностей аудиокарты — наличие разделительного конденсатора на входе, постоянная составляющая электрического тока не будет показана на осциллографе. Но, используя приложение, можно ее измерить. Подавать сигнал лучше на вход LINE IN, так как он имеет наименьший уровень шумов. Минимальный уровень сигнала, который можно измерить — около 1мВ.

Использование таких осциллоскопов ограничено по частоте. Ими можно снимать показания с усилителей, магнитофонов, различных звуковых девайсов, а также микросхем, работающих на частотах до 20 кГц.

  Способы обновления БИОСа материнской платы MSI

На высоких частотах применяется USB-осциллографы, имеющие больше возможностей.  Минусом таких устройств является высокая цена.

Конструкция и применение

Осциллограф — сложный электрический прибор. Понять принцип его работы поможет блок-схема.

Имеются два луча развертки: по вертикали — Y и по горизонтали — X. По оси X откладывается значения времени, по Y отображается амплитуда сигнала.

На Y подается сигнал с устройства. Далее он проходит через аттенюатор, который изменяет чувствительность контура.

Потом, пройдя предварительный усилитель, попадает в линию задержки, которая «придерживает» сигнал пока не сработает генератор развертки.

Оконечный усилитель выводит сигнал на экран осциллоскопа. Чем больше входное напряжение, тем больше амплитуда сигнала.

На X подается пилообразное напряжение с генератора развертки, благодаря чему сигнал на осциллографе получается «растянутым» по времени. Меняя размерность генератора, можно получить изображение с разверткой до тысячных долей секунды.

Чтобы развертка запустилась одновременно с поступлением сигнала, в устройстве предусмотрена система синхронизации. Есть 3 возможных источника синхроимпульсов:

  1. Измеряемый сигнал. Наиболее часто используемый вариант, особенно при постоянной частоте входящего источника.
  2. Электрическая сеть. Частота сети поддерживается с высокой точностью, поэтому через нее возможна синхронизация.
  3. Внешний источник. Используется, как лабораторный генератор сигналов, так и смартфон с приложением, генерирующим синхроимпульсы определенной частоты.

Осциллограф визуализирует форму сигнала, что помогает понять причину неисправности. С помощью устройства снимается АЧХ прибора, есть возможность узнать скорость нарастания импульса в цифровых устройствах.

Используются осциллографы при настройке, ремонте электронных девайсов, будь то бытовая техника, ремонт автотранспорта или орбитальная станция.

Схема и сборка устройства

Существует много схем для изготовления цифрового USB-осциллографа своими руками. Не все доступны для неопытного радиолюбителя. Наиболее легким является сборка устройств на основе звуковой карты, так как здесь нужно собрать только делитель для увеличения порога входящего напряжения.

Подключение через USB

USB-осциллограф сложный в изготовлении своими руками, но высокоточный прибор с большим диапазоном по частоте. Детали для него можно приобрести в магазине или заказать через интернет. Список запчастей следующий:

  • двусторонняя плата с готовыми дорожками;
  • АЦП AD9288−40BRSZ;
  • система собирается на процессоре марки CY7C68013A;
  • резисторы, трансформаторы, конденсаторы, дроссели — номиналы указаны на схеме;
  • паяльник и монтажный фен, паяльная паста, флюс и припой;
  • провод с площадью сечения 0,1 мм2 и лаковым покрытием;
  • тороидальный сердечник для изготовления трансформатора;
  • чип памяти EEPROM flash 24LC64;
  • реле с управляющим напряжением не более 3,3 В;
  • операционные усилители AD8065;
  • преобразователь постоянного тока DC-DC;
  • USB коннектор;
  • стеклотекстолит;
  • разъемы для щупов, корпус для платы.

  Как пользоваться функцией Google Smart Lock и что это такое

Схема устройства приведена ниже.

Так как используется двусторонний монтаж, то самостоятельно плату с дорожками изготовить не получится. Надо обратиться к производственному объединению, выпускающему подобные изделия, и сделать заказ со следующими условиями:

  • стеклотекстолит, на котором будет размечена схема, должен иметь толщину не менее 1,5 мм;
  • толщина медных дорожек не менее 1 унции (OZ) или 35 мкм;
  • сквозная металлизация отверстий;
  • лужение контактных площадок для лучшего припаивания элементов.

Получив заказ, можно приступать к сборке. Вначале собирается конвертер DC-DC, для получения двух постоянных напряжений: +5 В и -5 В. Изготавливается он отдельно от основного устройства, а затем подсоединяется экранированным кабелем.

Далее аккуратно припаять элементы схемы. Особенно быть осторожным при пайке микросхем, не допускать увеличения температуры паяльника выше 300°С.

Разместив изготовленное устройство в корпусе, подключить его к компьютеру через USB разъем. После этого перемкнуть перемычку JP1.

Использование аудиокарты

Осциллограф из внешней звуковой карты — малобюджетный и простой в изготовлении осциллоскоп к компьютеру или ноутбуку. Более всего подойдет начинающим радиолюбителям. Можно использовать как внешнее, так и внутреннее звуковое устройство.

Входное напряжение для внутренней звуковой карты компьютера не должно превышать 0,5-2 В. Чтобы измерить сигнал с амплитудой более 2 В, необходимо подать его на компьютер через делитель напряжения. Собирается аттенюатор по следующей схеме.

Подаваемое напряжение уменьшается в 100, 10 или 1 раз, в зависимости от величины. Для этого щупы вставляются в соответствующие разъемы. Точная настройка происходит через подстроечный резистор. Диоды предохраняют от случайной подачи напряжения более 2 В.

Конструкцию разместить в металлической коробке для устранения возможных наводок. Провод, подключаемый к звуковой карте, должен быть коротким с медной оплеткой. Для создания второго канала необходимо продублировать устройство. Если на карте есть несколько входов, то выбрать с наименьшим внутренним сопротивлением.

  Где используется оптоволоконный кабель, как устроен и что это такое

Ниже рассматривается схема с использованием внешней USB звуковой карты стоимостью около 2 долларов.

Кроме адаптера понадобятся:

  • сопротивление на 120 кОм:
  • коннектор mini Jake;
  • щупы для измерений.

После приобретения всех запчастей проделать следующие шаги:

  1. Вскрыть аккуратно адаптер, так, чтобы не сломать защелки. Внутри будет небольшая плата.
  2. Снять конденсатор C6 и поставить на его место сопротивление на 120 кОм.
  3. Припаять к щупам коннекторы mini Jack вместо оригинальных и вставить их в адаптер.
  4. Скачать архив с драйверами устройства и распаковать его в папку. Вставить гаджет в компьютер.
  5. Компьютер запросит драйвера на новое устройство.
  6. Установить их, указав путь к папке.
  7. Нажать на кнопку «Далее» для установки драйверов.

Перед использованием осциллограф необходимо настроить.

Настройка изделий

После сборки USB-осциллографа, на последнем этапе нужно прошить чип памяти EEPROM flash 24LC64. Для этого:

  1. Скачать и установить на компьютер приложение Cypress Suite.
  2. Запустить программу и перейти в меню EZ Console.
  3. Нажать на надпись «LG EEPROM».
  4. Появится окно с файлом прошивки. Выбрать его и запустить клавишей Enter.
  5. Если появилась ошибка «Error», запустить операцию прошивки снова.
  6. После успешного окончания процесса должна появиться надпись «Done». Осциллограф готов к работе.

Перед запуском осциллоскопа на основе внешнего аудиоадаптера проделать следующие действия:

  1. Сохранить файлы miniscope.exe, miniscope.ini и miniscope.log из скачанного архива в отдельной папке. Открыть miniscope.exe.
  2. После запуска программы, зайти в настройки и произвести действия, показанные на рисунках.
  3. Для проверки работоспособности подать тестовый сигнал. Должна появиться синусоида.

Устройство готово к работе.

Калибровка необходима устройству, работающему через аттенюатор и внутреннюю звуковую карту. Для этого подать на гаджет сигнал с известными амплитудой и частотой. Добившись устойчивой развертки, включить измерительную сетку. Согласовывая действия подстроечного резистора с регулировками на панели управления, привести значения сетки к исходным величинам.

Если не получится корректно отобразить значения, то можно отъюстировать сетку при помощи регулировок звука на компьютере. Открыть для этого регулятор громкости, расположенный на панели задач и, двигая ползунок, получить нужный уровень сигнала.

Готовые изделия перед включением обязательно заземлить. Соблюдать осторожность при подаче сигнала на порт звукового адаптера.

Источник: http://composs.ru/kak-sdelat-oscillograf-iz-kompyutera/

Входные узлы самодельных осциллографов

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Этот обзор предназначен для людей, ставящих своей целью построение самодельных осциллографов низкого и среднего уровней сложности. Как правило цифровых, благо современная элементная база (микроконтроллеры) позволяют делать их не слишком сложными. Но и для аналоговых осциллографов многое из нижесказанного вполне применимо.

Данный обзор суммирует опыт, приобретенный мной при пробах и изготовлении более десяти (примерно 15) осциллографов.

Схемотехника построения осциллографов может быть самой различной, поэтому данный обзор не претендует на бесспорность и отражает лишь мой взгляд и мой опыт.

Итак. Для многих радиолюбительских задач считаю, что осциллограф должен позволять рассматривать сигналы с уровнем от 5-20 милливольт, до нескольких десятков вольт.

Чувствительность в милливольтах позволит отлавливать помехи и настраивать фильтры в цепях различных устройств и блоках питания.

Чувствительность в десятки вольт нужна при наладке и диагностике различных блоков питания, особенно импульсных.

Да и многие другие устройства значительно проще налаживать имея осциллограф.

Исходя из этого и получаем требования к входному аттенюатору. Я буду рассматривать аттенюатор, построенный на механических переключателях. Почему – объясню несколько позже.

К сожалению значительное количество ступеней делителя требует применения галетных переключателей. А они как правило весьма габаритны и плохо вписываются в миниатюрные любительские конструкции.

Из наиболее доступных и распространенных встречаются переключатели на три положения. Вот на них и будем ориентироваться.

Схемы входных аттенюаторов

Пожалуй наиболее часто встречается входной аттенюатор (делитель), собранный по схеме, приведенной на рисунке 1.

Схема может быть нарисована по разному, это не принципиально. Зачастую вместо переключателя используют специальные микросхемы – мультиплексоры, суть от этого не меняется. Просто вместо механики, используют микросхему, имеющую цифровое управление и позволяющую реализовать большее количество ступеней делителя, да еще и управляется это все счастье программно, кнопками.

Удобно вроде. Правда есть жирное «НО» в этом деле. При настройке осциллографа обычно подают на его вход прямоугольный сигнал и настраивают емкость С1 и С3, добиваясь плоских вершин импульсов. Примерно вот так. (Здесь и далее идут скриншоты из программы «Мультисим 12»).

Настройка обычно производится один раз. На одном конкретном диапазоне чувствительности. И на этом считается законченной.

Но вот при переключении на другие диапазоны чувствительности, при рассмотрении сигналов с другим напряжением, нас как правило ожидает проблема. Мы вместо прямоугольника можем увидеть такое:

Или такое:

И только конденсаторами С2 и С4 по схеме 1, не меняя настройки конденсатора С1, нам не удается никак это скомпенсировать.

Должен заметить, что на последних двух картинках изображены еще достаточно простые случаи, относительно понятные. А могут быть и куда круче. Вплоть до полной невменяемости. Что делать? Каждый раз настраивать С1? По моему опыту, многие просто даже не обращают внимания на этот нюанс настройки. Ну и в результате видят неизвестно что.

Конечно я не готов утверждать, что в принципе невозможно подобрать конфигурацию корректирующих цепей, составляя отдельные резисторы делителя из нескольких последовательно, со своими компенсирующими емкостями на каждом. Просто мне это не удалось. Ни в железе, ни в Мультисиме.

Чтобы избавиться от данного недостатка лучше применять другую схему входного аттенюатора. По рисунку 2.

Отличие от первой только в том, что переключается не только нижнее плечо делителя, но и верхнее. И частотно компенсирующая емкость для верхнего плеча каждого из делителей настраивается отдельно.

То есть при переключении диапазонов чувствительности картинка прямоугольного импульса меняться не будет.  Как мы настроим каждый диапазон отдельно, так это и будет работать.

Но. Эта схема требует уже переключателя с двумя группами контактов. И для верхнего плеча уже в принципе невозможно применить мультиплексоры. Потому, что там действуют уже входные напряжения осциллографа. Т.е. программное управление затруднено.

Можно конечно применить мультиплексоры с электромагнитными реле на выходах и применять аттенюатор по схеме 2, но это вызовет резкий рост габаритов и энергопотребления осциллографа, что весьма нездорово для устройств с батарейным питанием.

Это и определяет то обстоятельство, что я считаю оптимальными именно механические переключатели. О чем упоминал выше.

Как вариант можно применить принцип как в DSO-138 и его последователях.

Клик для увеличения

Та же схема 2, но резисторы верхнего плеча соединены между собой. Но за это придется расплачиваться уменьшением входного сопротивления на диапазоне с максимальной чувствительностью. Из-за влияния ступеней делителя друг на друга.

Словом, на сегодняшний день, считаю оптимальным для несложных самодельных осциллографов использовать входной аттенюатор (делитель) по схеме 2.

Переключение диапазонов

И здесь мы подходим ко второй проблеме этого дела. Трех ступеней делителя НЕДОСТАТОЧНО. Получается, что наименьшие сигналы будет трудно рассмотреть и требуется дополнительное переключение либо растяжка по вертикали.

Можно применить галетники. Но это габариты, сопоставимые с габаритами самого ослика. Наименьший, что у меня есть – на 5 положений 2 направления, размерами чуть длиннее подстроечного советского резистора. Но 5 положений тоже мало, да и он выдран из японской техники очень давно и аналогов мне больше не попадалось. Не путь.

Последний из построенных мной осциллографов это «Осциллограф на микроконтроллере ATMEGA32А» с сайта bezkz. Его особенность в том, что он имеет программную растяжку 2 раза в 2 раза. То есть способен растягивать картинку в 2 и 4 раза. 

С трехпозиционным переключателем диапазонов чувствительности получается всего 9 положений. И они достаточно неплохо друг друга перекрывают. Я применил в нем входной аттенюатор на одной плате с усилителем на AD823. Естественно с цепями защиты и т.д.

Еще один вариант осциллографа, который нацеливаюсь переделать, это VirtOS в версии от VetalST под дисплей LS020. Он у меня уже реализован в металле, но диапазон чувствительности (1 вольт на деление, от 2 до 8 делений на экран) не устраивает.

В нем есть программная растяжка в 2 раза и потенциометром еще в 2 раза. Т.е. снова два раза по два, как в «Электрике». Правда переключение уже будет не столь удобное. Но этот ослик мне симпатичен и очень хотел бы довести его до ума. Планирую добавить в него усилитель с аттенюатором и расширить диапазон в 100 раз вниз. Ну а щуп с делителем на 10 – повышает диапазон вверх.

Можно еще также рассмотреть входные усилители на ОУ. Особенности их применения. С конкретными схемами узлов и печатными платами. Но это уже тема для следующей статьи. А пока призываю тех, кто планирует разработку несложных осциллографов, отдать предпочтение все же механическим переключателям во входных делителях. 

Для начинающих радиолюбителей такие схемы куда проще в изготовлении и настройке. И на практике мне лично куда удобнее переключать диапазоны просто щелкая переключателями, а не прыгать по пунктам меню кнопками, либо энкодерами. Специально для сайта Радиосхемы – Тришин Александр Олегович. Г. Комсомольск-на Амуре.

   Форум

   Обсудить статью Входные узлы самодельных осциллографов

Источник: https://radioskot.ru/publ/vkhodnye_uzly_samodelnykh_oscillografov/1-1-0-1328

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.