Что такое ЭДС — объяснение простыми словами

Эдс и напряжение: что это и в чем разница – Сайт о

Что такое ЭДС — объяснение простыми словами

Электрическим током называют упорядоченное движение заряженных частиц (тел). За направление движение электрического тока условно принимают направление движения положительных зарядов.

Проходящий через какую-то поверхность электрический ток характеризуется силой тока I.

Сила тока является скалярной величиной, численно равная количеству электричества, проходящего через площадь S за единицу времени:

  • Если за любые равные промежутки времени через любое сечение проводника проходит одинаковое количество электричества с неизменным направлением зарядов, то такой ток называется постоянным:
  • Сила тока в Международной системе единиц (СИ) является основной и носит название Ампер. Из уравнения (1а) следует определение единицы заряда:
  • В системе СГС сила тока измеряется в СГСI, согласно (1а) получим:
  • Распределение электрического тока по сечению проводника характеризуют плотностью тока, которую можно выразить формулой:
  • В случае постоянного тока его плотность будет одинакова и равна:
  • Плотность тока j является векторной величиной, направленной вдоль тока и численно  равная количеству электричества, протекающему через единицу площади, ориентированной перпендикулярно направлению протекания тока, за единицу времени, в системе СИ плотность тока измеряют в А/м2.

Важно отметить, что различают несколько видов электрического тока. Предположим, что в пространстве перемещается какое-то заряженное макроскопическое тело (шар, например).

Поскольку вместе с этим телом будут перемещаться и заряды, то возникнет направленное движение электрических зарядов – электрический ток.

Электрический ток, связанный с движением заряженных макроскопических тел называют конвекционным.

Если огромное количество заряженных частиц упорядоченно перемещаются внутри какого-нибудь тела вследствие того, что в нем создано электрическое поле, то данное явление будет носить название ток проводимости.

Для его получения необходимо наличие источника тока и  замкнутой цепи. Вектор напряженности поля Е имеет направление от положительного заряда к отрицательному.

Отсюда следует, что находящиеся внутри проводника отрицательные заряженные частицы будут двигаться против поля, а положительные – по полю.

  1. Если электрические заряды движутся под влиянием внешнего поля в вакууме, то данное явление называют электрический ток в вакууме.
  2. Более детально остановимся на отдельных закономерностях, которые больше характерны для тока проводимости.
  3. Представим, что на концах определенного проводника длиной l существует разность потенциалов Δφ = φ1 – φ2, которая создает внутри этого проводника электрическое поле Е, направленное в сторону падения потенциала (рисунок ниже):
  4. Согласно формуле:
  5. При этом в проводнике возникнет электрический ток, который будет идти от большего потенциала (φ1) к меньшему (φ2).

Движение зарядов от φ1 к φ2 приводит к выравниванию потенциалов во всех точках. При этом в проводнике исчезает электрическое поле, и протекание электрического тока прекращается.

Отсюда следует, что обязательным условием существования электрического тока является наличие разности потенциалов Δφ = φ1 – φ2 ≠ 0, а для его поддержания необходимо специальное устройство, которое будет поддерживать данную разницу потенциалов. Это устройство называют источник тока.

В качестве источников тока могут использовать электрические генераторы, аккумуляторы, термоэлементы и гальванические элементы. Источник тока также выполняет еще одну задачу – замыкает электрическую цепь, по которой и осуществляется непрерывное движение заряженных частиц.

Электрический ток протекает по внутренней части – источнику тока, и внешней – проводнику. В источнике тока имеется два полюса – положительный с более высоким потенциалом и отрицательный с более низким потенциалом.

При разомкнутой внешней цепи на положительном полюсе источника образуется недостаток электронов, а на отрицательном наоборот – переизбыток.

В источнике тока разделение зарядов производят с помощью сторонних сил – направленных против кулоновских сил, действующих на разноименные заряды в проводниках самого источника тока. Сторонние силы могут иметь самое различное происхождение – химическое, биологическое, тепловое, механическое и другое.

  • Если электрическая цепь замкнута, то по ней протекает электрический ток и при этом совершается работа сторонних сил. Данная работа складывается из работы, совершаемой внутри самого источника тока против сил электрического поля (Аист), и работы, совершаемой против механических сил сопротивления среды источника (А/), то есть:
  • Электродвижущая сила источника тока – это величина, которая равна отношению работы, совершаемой сторонними силами при перемещении положительного точечного заряда вдоль всей электрической цепи, включая и источник тока, к заряду:
  • По определению работа против сил электрического поля равна:
  • А/ = 0 если полюсы источника разомкнуты, и тогда из формулы (5) следует:
  • Отсюда следует, что электродвижущая сила источника тока при разомкнутой внешней цепи будет равна разности потенциалов на его полюсах.

Источник:

От электростатики к электрокинетике

Между концом XVIII и началом XIX века работы таких учёных, как Кулон, Лагранж и Пуассон, заложили математические основы определения электростатических величин. Прогресс в понимании электричества на этом историческом этапе очевиден. Франклин уже ввёл понятие «количество электрической субстанции», но пока ещё и он, ни его преемники не смогли его измерить.

Следуя за экспериментами Гальвани, Вольта пытался найти подтверждения того, что «гальванические жидкости» животного были одной природы со статическим электричеством.

В поисках истины он обнаружил, что когда два электрода из разных металлов контактируют через электролит, оба заряжаются и остаются заряженными несмотря на замыкание контура нагрузкой.

Это явление не соответствовало существующим представлениям об электричестве потому, что электростатические заряды в подобном случае должны были рекомбинировать.

Вольта ввёл новое определение силы, действующей в направлении разделения зарядов и поддержании их в таком состоянии. Он назвал её электродвижущей. Подобное объяснение описания работы батареи не вписывалось в теоретические основы физики того времени. В Кулоновской парадигме первой трети XIX века э. д. с. Вольта определялась способностью одних тел вырабатывать электричество в других.

Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах.

Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность.

Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.

Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:

  • 1800 г. — создание Вольтой гальванической батареи;
  • 1826 г. — Ом формулирует свой закон для полной цепи;
  • 1831 г. — обнаружение электромагнитной индукции Фарадеем.

Определение и физический смысл

В качестве иллюстрации их работы удобно рассматривать замкнутый контур из сопротивления и гальванического источника питания (батареи). Если предположить, что внутри батареи тока нет, то описанная проблема объединения зарядов остаётся неразрешённой.

Но в цепи с реальным источником питания электроны перемещаются постоянно. Это происходит благодаря тому, что поток ионов протекает и внутри батареи от отрицательного электрода к положительному. Источник энергии, перемещающий эти заряды в батарее — химические реакции.

Такая энергия называется электродвижущей силой.

ЭДС является характеристикой любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром работа источника э. д. с. соответствует работе насоса для создания давления воды. Поэтому значок, обозначающий эти устройства, неотличим на гидравлических и электрических схемах.

Несмотря на название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Её численное значение равно работе по перемещению заряда по замкнутой цепи. ЭДС источника выражается формулой E=A/q, в которой:

  • E — электродвижущая сила в вольтах;
  • A — работа сторонних сил по перемещению заряда в джоулях;
  • q — перемещённый заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или нагрузки, а есть способность генератора электроэнергии к разделению зарядов.

Сравнение с разностью потенциалов

Электродвижущая сила и разность потенциалов в цепи очень похожие физические величины, так как оба измеряются в вольтах и определяются работой по перемещению заряда.

Одно из основных смысловых различий заключается в том, что э. д. с. (E) вызывается путём преобразования какой-либо энергии в электрическую, тогда как разность потенциалов (U) реализует электрическую энергию в другие виды.

Другие различия выглядят так:

  • E передаёт энергию всей цепи. U является мерой энергии между двумя точками на схеме.
  • Е является причиной U, но не наоборот.
  • Е индуцируется в электрическом, магнитном и гравитационном поле.
  • Концепция э. д. с. применима только к электрическому полю, в то время как разность потенциалов применима к магнитным, гравитационным и электрическим полям.

Напряжение на клеммах источника питания, как правило, отличается от ЭДС источника. Это происходит из-за наличия внутреннего сопротивления источника (электролита и электродов, обмоток генератора). Связывающая разность потенциалов и ЭДС источника тока формула выглядит как U=E-Ir. В этом выражении:

  • U — напряжение на клеммах источника;
  • r — внутреннее сопротивление источника;
  • I — ток в цепи.

Из этой формулы электродвижущей силы следует, что э. д. с. равна напряжению когда ток в цепи не течёт. Идеальный источник ЭДС создаёт разность потенциалов независимо от нагрузки (протекающего тока) и не обладает внутренним сопротивлением.

В природе не может существовать источника с бесконечной мощностью при замыкании на клеммах, как и материала с бесконечной проводимостью. Идеальный источник используется как абстрактная математическая модель.

Источники электродвижущей силы

Суть источника ЭДС заключается в преобразовании других видов энергии в электрическую с помощью сторонних сил. С точки зрения физики обеспечения э. д. с различают следующие два основных вида источников:

  • гальванические;
  • электромагнитные.

Источник: https://sosh16zernograd.ru/elektronika-i-tehnika/eds-i-napryazhenie-chto-eto-i-v-chem-raznitsa.html

Что такое ЭДС (электродвижущая сила)

Что такое ЭДС — объяснение простыми словами

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении.

Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка.

То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени.

То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС.

Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление.

По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая  (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от пьезоэлектриков)

Резюме

ЭДС – это сила НЕэлектрического происхождения, которая заставляет течь электрический ток в цепи.

Реальный источник ЭДС имеет внутри себя  внутреннее сопротивление, у идеального источника ЭДС внутреннее сопротивление равняется нулю.

Идеальный источник ЭДС всегда имеет на своих клеммах постоянное значение напряжения не зависимо от нагрузки в цепи.

Источник: https://www.RusElectronic.com/eds-elektrodvizhushchaya-sila/

Что такое ЭДС и в она чем измеряется?

Что такое ЭДС — объяснение простыми словами

Когда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север — такие усилия тут, в общем-то, не в счет.

А вот стоило проделать некоторую работу — руками по натиранию камушка о шерстяную сухую тряпочку — и он приобретал новые свойства. Это знали все.

Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки.

В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками — значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно.

Иллюстрация 1

Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить.

И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями.

 Иллюстрация 2

А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта — совсем не электрическая.

А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем.

Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу.

Принцип работы

ЭДС — это сила самой разной природы, хотя измеряется она в вольтах:

Схема простейшего прибора

  • Химической. Происходит от процессов химического замещения ионов одних металлов ионами других (более активных). В результате образуются лишние электроны, стремящиеся «спастись» на краю ближайшего проводника. Такой процесс бывает обратимым или необратимым. Обратимый — в аккумуляторах. Их можно зарядить, вернув заряженные ионы обратно в раствор, отчего он приобретет больше, например, кислотности (в кислотных аккумуляторах). Кислотность электролита и есть причина ЭДС аккумулятора, работает непрерывно, пока раствор не станет абсолютно нейтральным химически.

Аккумуляторная батарея в разрезе       Схематическое изображение аккумуляторной батареи

  • Магнитодинамической. Возникает при воздействии на проводник, некоторым образом ориентированный в пространстве, изменяющегося магнитного поля. Или от магнита, движущегося относительно проводника, или от движения проводника относительно магнитного поля. Электроны в этом случае тоже стремятся двигаться в проводнике, что позволяет их улавливать и помещать на выходные контакты устройства, создавая разность потенциалов.

Работа фотоэлемента   Электрогенератор

  • Электромагнитной. Переменное магнитное поле создается в магнитном материале переменным электрическим напряжением первичной обмотки. Во вторичной обмотке возникает движение электронов, а значит и напряжение, пропорциональное напряжению в первичной обмотке. Значком ЭДС трансформаторы могут обозначаться в схемах эквивалентного замещения.

Схема работы трансформатора

  • Фотоэлектрической. Свет, попадая на некоторые проводящие материалы, способен выбивать электроны, то есть делать их свободными. Создается избыток этих частиц, отчего лишние выталкиваются к одному из электродов (аноду). Возникает напряжение, которое и способно породить электрический ток. Такие приборы называются фотоэлементами. Первоначально были придуманы вакуумные фотоэлементы, в которых электроды были установлены в колбе с вакуумом. Электроны в этом случае выталкивались за пределы металлической пластинки (катод), а улавливались другим электродом (анод). Такие фотоэлементы нашли применение в датчиках света. С изобретением же более практичных полупроводниковых фотоэлементов стало возможным создавать из них мощные батареи, чтобы суммированием электродвижущей силы каждого из них вырабатывать существенное напряжение.

Схема работы солнечной батареи

  • Теплоэлектрической. Если два разных металла или полупроводника спаять в одной точке, а потом в эту точку доставить тепло, например, свечи, то на противоположных концах пары металлов (термопары) возникает разница в плотностях электронного газа. Эта разница может накапливаться, если соединить термопары последовательной цепочкой, подобно соединению гальванических элементов в батарее или отдельных фотоэлементов в солнечной батарее. ТермоЭДС используется в очень точных датчиках температуры. С этим явлением связано несколько эффектов (Пельтье, Томсона, Зеебека), которые успешно исследуются. Фактом является то, что теплота способна непосредственно превратиться в электродвижущую силу, то есть напряжение.

Схема работы тепловой батареи

  • Электростатической. Такие источники ЭДС были придуманы практически одновременно с гальваническими элементами или даже раньше (если считать натирание янтаря шелком нормальным производством ЭДС). Они еще называются электрофорными машинами, или, по имени изобретателя, генераторами Вимшурста. Хотя Вимшурст создал внятное техническое решение, позволяющее снятый потенциал накапливать в лейденской банке — первом конденсаторе (причем, хорошей емкости). Первой же электрофорной машиной можно считать огромный шар из серы, насаженный на ось, — аппарат магдебургского бургомистра Отто фон Герике в середине XVII века. Принцип работы — натирание легко электризующихся от трения материалов. Правда прогресс у фон Герике можно назвать, по поговорке, движимым ленью, когда нет охоты натирать янтарь или что-то другое вручную. Хотя, конечно, этому любознательному политику чего-чего, а фантазии и активности было не занимать. Вспомним хотя бы его же всем известный опыт с разрыванием двумя вереницами ослов (или мулов) шара без воздуха за цепи на два полушария.

Электрофорная машина

Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто.

Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха.

Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.

  • Термоэмиссионной. При нагревании металлов с их поверхности срываются электроны. В вакууме они достигают другого электрода и наводят там отрицательный потенциал. Очень перспективное сейчас направление. На рисунке приведена схема защиты гиперзвукового летательного аппарата от перегрева частей корпуса встречным потоком воздуха, причем термоэлектроны, испускаемые катодом (который при этом охлаждается — одновременное действие эффектов Пельтье и/или Томсона), достигают анода, наводя на нем заряд. Заряд, вернее, напряжение, которое равно полученной ЭДС, можно использовать в цепи потребления внутри аппарата.

Термоэмиссионный заряд

1 — катод, 2 — анод, 3, 4 — отводы катода и анода, 5 — потребитель

  • Пьезоэлектрической. Многие кристаллические диэлектрики, когда испытывают механическое давление на себя в каком-либо направлении, реагируют на него наведением разницы потенциалов между своими поверхностями. Эта разность зависит от приложенного давления, поэтому уже используется в датчиках давления. Пьезоэлектрические зажигалки для газовых плит не требуют никакого другого источника энергии — только нажатия пальцем на кнопочку. Известны попытки создания пьезоэлектрической системы зажигания в автомобилях на основе пьезокерамики, получающей давление от системы кулачков, связанных с главным валом двигателя. «Хорошие» пьезоэлектрики — у которых пропорциональность ЭДС от давления высоко точна — бывают очень тверды (например, кварц), при механическом давлении почти не деформируются.

  Пьезоэлектрический элемент  Схема пьезоэлектрического элемента

  • Однако долгое воздействие давлением на них вызывает их разрушение. В природе мощные слои каменных пород также являются пьезоэлектриками, давления земных толщ наводят громадные заряды на их поверхностях, что порождает в глубинах земли титанические бури и грозы. Однако, не все так страшно.Уже были разработаны и эластичные пьезоэлектрики, и даже уже началось изготовление на их основе (и на основе нанотехнологий) изделий, идущих на продажу.

То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами.

Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон — отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее — от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +.

Только в обоих случаях — и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, — мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление.

И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, — сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…

Работа электрической батарейки

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO4-, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется Uхх, напряжением холостого хода. И оно численно равно ЭДС — электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.  

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1.  Измерить E (помним, напряжение холостого хода, единица измерения — вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I1.
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r  

Иллюстрация

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать.

Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно Uхх.

Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю.

Это точка Iкз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений.

А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов — и все начинай с начала: электродвижущая сила источника тока.

Или просто выбей на стене золотыми буквами:

Надпись

Источник: https://domelectrik.ru/baza/teoriya/eds

ЭДС: определение и формула, в чём измеряется, работа источника электродвижущей силы

Что такое ЭДС — объяснение простыми словами

Электрический ток не протекает в медном проводе по той же причине, по которой остаётся неподвижной вода в горизонтальной трубе.

Если один конец трубы соединить с резервуаром таким образом, чтобы образовалась разность давлений, жидкость будет вытекать из одного конца.

Аналогичным образом, для поддержания постоянного тока необходимо внешнее воздействие, перемещающее заряды. Это воздействие называется электродвижущая сила или ЭДС.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.