Как определить требуемый расход и напор насоса

Содержание

Основные принципы подбора насосов. Расчет насосов

Как определить требуемый расход и напор насоса

Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

Требуется найти объемный коэффициент полезного действия насоса.

Решение:

Площадь поперечного сечения плунжера :

F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

Пример №2

Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

Решение:

Площади попреречного сечения поршня и штока:

F = (3,14·0,08²)/4 = 0,005024 м²

F = (3,14·0,01²)/4 = 0,0000785 м²

Производительность насоса находится по формуле:

Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

Далее находим полезную мощность насоса:

NП = 920·9,81·0,0045195·160 = 6526,3 Вт

С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

Пример №3

Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м3/час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

Решение:

Найдем создаваемый насосом напор из формулы полезной мощности:

H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

hп = H – (p2-p1)/(ρ·g) – Hг = 617,8 – ((1,6-1)·105)/(1080·9,81) – 3,2 = 69,6 м

Пример №4

Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

Решение:

Выразим искомую величину из формулы производительности винтового насоса:

ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

Пример №5

Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

Решение:

Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

Скоростной напор в трубе:

w²/(2·g) = 2²/(2·9,81) = 0,204 м

При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м

Общий напор составит:

H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м

Остается определить полезную мощность:

NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

Пример №6

Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?

Решение:

Рассчитаем скорость потока воды в трубопроводе:

Q = (π·d²)/4·w

w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

Пример №7

Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

Решение:

Теоретическая производительность насоса:

Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час

Коэффициент подачи соответственно равен:

ηV = 0,0004256/1,8·3600 = 0,85

Пример №8

Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

Решение:

Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт

Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

β = NУ/NД = 9500/8599 = 1,105

Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

Пример №9

Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

Решение:

Рассчитаем напор, создаваемый насосом в трубопроводе:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) – 12 + 32,6 = 25,11 м

Полезная мощность насоса может быть найдена по формуле:

NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

Пример №10

Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час.

Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83.

Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

Решение:

Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

Рассчитаем напор, необходимый для перекачивания воды:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м

Полезная мощность, развиваемая насосом:

NП = Nобщ/ηН = 1000/0,83 = 1205 Вт

Значение максимального расхода найдем из формулы:

NП = ρ·g·Q·H

Найдем искомую величину:

Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

Qмакс/Q = 0,00836/24·3600 = 1,254

Источник: https://ence-pumps.ru/podbor_raschet_nasosov/

Напор насоса

Как определить требуемый расход и напор насоса

Напор насоса – это давление, создаваемое рабочим органом насоса (лопастным колесом, мембраной или поршнем) по средствам передачи энергии от рабочего органа насоса (рабочего колеса, мембраны или поршня) к жидкости, т.е насос фактически толкает жидкость.

Напор: определение и характеристика

Напор является одной из основных характеристик насоса.

Напором называют приращение механической энергии, получаемой каждым килограммом жидкости, проходящей через насос, т.е. разность энергии при выходе из насос и при входе в него.

Физическую сущность напора легко понять вспомнив основы гидромеханики. Если к всасывающему патрубку насоса, берущего жидкость из ёмкости, расположенной выше его оси, подключить трубку полного напора, то уровень жидкости в ней будет поднят на некоторую высоту над осью насоса. Эта высота называется полным напором и определяется формулой

Н = p / (ρ*g)

где р – давление в насосе ρ – плотность среды

g – ускорение свободного падения

На бытовом уровне напором называют давление насоса. И для наглядности давление насоса – это высота, на которую насос может поднять столб жидкости.

Напор имеет линейную размерность – метр.

При подборе насоса напорная характеристика является одной из ключевых, ведь при недостаточном напоре, из крана не будет течь вода, а при слишком высоком напоре может не выдержать водопроводная трасса.

Напор и подача, которые создает насос взаимно связаны. Такую взаимосвязь графически изображают в виде кривой которая называется характеристика насоса. По одной оси графика откладывают напор(в метрах) по другой оси – подачу насоса(в м3/ч).

У каждого насоса – своя характеристика и заданная производителем рабочая точка. Рабочая точка – точка в которой уравновешены полезная мощность насоса и мощность потребляемая водопроводной сетью. По мере изменения подачи – меняется и напор.

При уменьшении подачи напор увеличивается, а при увеличении – уменьшается. Найти оптимальную рабочую точку – это основная задача при эксплуатации насоса.

Напор скважинного и погружного насоса

Расчет требуемого напора скважинного насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив , где

Hвысота – перепад высот между местом, где расположен насос и наивысшей точкой системы водоснабжения;

Hпотери – гидравлические потери в трубопроводе. Гидравлические потери в трубопроводе связаны с трением жидкости о стенки труб, падением давления на поворотах и других фитингах. Такие потери определяются по экспериментальным или расчетным таблицам.

Hизлив – свободный напор на излив, при котором удобно пользоваться сантехническими приборами. Данное значение необходимо брать в диапазоне 15 – 20 м, минимальное значение 5 м, но в этом случае вода будет подаваться тонкой струйкой.

Все описанные выше параметры измеряются в метрах.

Напор дренажного и поверхностного насоса

Поверхностный насос предназначен для подачи воды из неглубоких колодцев или скважин. Так же поверхностные самовсасывающие насосы используют для подачи воды из открытых источников или баков. Такие насосы располагаются непосредственно в помещениях, а в источник с водой проводят трубопровод.

1 Вариант: источник с водой расположен выше насоса. Например, какой-то бак или водонапорный резервуар на чердаке дома. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив – Hвысота бака , где

Hвысота бака – расстояние (высота) между баком запаса воды и насосом

2 Вариант: насос расположен выше источника воды. Например, насос расположен в доме и тянет воду из колодца или скважины. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив + Hисточник, где

Hисточник – расстояние (перепад высот) между источником воды (скважина, колодец) и насосом.

Напор циркуляционного насоса для отопления

Циркуляционные насосы используются в системах отопления домов, для обеспечения принудительной циркуляции теплоносителя. Расчет циркуляционного насоса – очень ответственная и сложная задача, которую рекомендуется отдать специализированным учреждениям, так как для расчетов необходимо знать точные теплопотери дома.

Напор циркуляционного насоса для отопления зависит не от высоты здания, а от гидравлического сопротивления трассы.

H = (R * L + Zсумма) / ( p * g ) , где

R – потери на трение в прямом трубопроводе, Па/м. По результатам опытов сопротивление в прямом трубопроводе равно 100 – 150 Па/м.

L – общая длина трубопровода, м.

Zсумма – коэффициенты запаса для элементов трубопровода

Z = 1,3 – для фитингов и арматуры;

Z = 1,7 – для термостатических вентилей;

Z = 1,2 – для смесителей или кранов, предотвращающих циркуляцию.

p – плотность перекачиваемой среды. Для воды = 1000 кг/м3

g – ускорение свободного падения, 9,8 м/с2.

Как видите определить требуемый именно Вам напор не составит большого труда, если отнестись к этой задаче с требуемым терпением и вниманием.

Способы увеличения напора насоса

Смонтировать насос, что может быть проще? Подключаем трубу к всасывающему патрубку, другую к напорному, подаем питание и вот можно пожинать плоды работы.

Давайте рассмотрим самые частые ошибки монтажа, устранение которых способствует увеличению напора насоса

С первого взгляда монтаж не представляет из себя трудоемкий процесс, но если заглянуть глубже, то следует учесть ошибки, которые способны значительно сократить срок службы оборудования.

Наиболее распространенные ошибки монтажа:

  диаметр трубопровода меньше диаметра всасывающего патрубка насоса. В этом случае увеличивается сопротивление во всасывающей магистрали, а как следствие уменьшение глубины всасывания насоса. Уменьшенный, по сравнению со всасывающим патрубком насоса, трубопровод не в состоянии пропустить тот объем жидкости на который рассчитан насос.

  подключение к всасывающей ветке обычного шланга. Этот вариант не настолько критичен, при условии размещения насоса небольшой производительности в нижней точке трассы. В других случаях насос за счет разряжения во всасывающей полости, создаваемого рабочим колесом, сожмет шланг, значительно уменьшив его сечение. Подача насоса значительно уменьшится, а может и совсем прекратиться.

Если вы решили подключить шланг к высокопроизводительному насосу, воспользуйтесь советом производителей насосов – используйте только гофрированный шланг

  провисание трубы на горизонтальном участки или уклон в сторону от насоса на стороне всасывающего участка. При работе центробежного насоса необходимо, чтобы рабочее колесо постоянно работало в воде, т.е. рабочая камера насоса должна быть заполнена перекачиваемой средой.

При провисании трубопровода или при отрицательном уклоне труб, жидкость из рабочей камеры выключенного насоса будет стекать в самую низкую точку трассы, а рабочее колесо будет крутиться в воздухе. Таким образом не будет движение среды в трубопроводе, а значит напор упадет до 0.

  большое число поворотов и изгибов в трубопроводе. Такой вариант монтажа приводит к увеличению сопротивления, а следовательно к уменьшению производительности

  плохая герметичность на всасывающем участке трубопровода. Плохая герметичность приводит к подсасыванию воздуха из окружающей среды в трубопровод, снижению напора и излишнему шуму при работе насоса.
по теме

В случае определения напора насоса необходимо помнить, что 1 метр напора, который насос создает в вертикальной трассе, равен 10 метрам по горизонтали. Например, если в горизонтальной трассе насос создает напор равный 30 метрам, то максимальный напор этого же насоса в случае монтажа в вертикальную трассу составит 300 метров

В дополнение к статье “Напор насоса это? Как определить напор погружного, поверхностного или циркуляционного насоса.” Вам может быть интересно:

Источник: http://www.nektonnasos.ru/articles/napor_nasosa/napor_nasosa.php

Рекомендации по подбору циркуляционного насоса отопления

Как определить требуемый расход и напор насоса

Насос циркуляции это один из важнейших элементов обязательных устройств в системе отопления частного дома, от правильности его работы зависит гидравлика отопления и теплоотдача батарей либо других источников теплопередачи тепла от греющего котла в отапливаемые помещения.

Рассчитать циркуляционный насос для отопления точно практически не возможно без многочисленных знаний, но приблизительно произвести подбор и сделать расчет напора вполне реальная задача для частника. Важны параметры скорости и проходимости отопительной жидкости по трубопроводам дома.

Рассчитать циркуляционный насос точно практически не возможно, но приблизительно вполне реальная задача, и нужная при устройстве обогрева дома в зимнее время года! Рассмотрим рекомендованные формулы для упрощенного подбора циркуляционных насосов.

Рекомендуется начать расчет насоса с вычисления его производительности.

Важно знать: Высота дома и этажность не имеет значения при подборе циркуляционного насоса!

Производительность циркуляционного насоса

Для расчета производительности циркуляционного насоса для системы отопления в доме необходимо знать один из следующих параметров:

  • а) Отапливаемая площадь помещений;
  • б) Мощность источника тепла (котел).

Если Вам известна отапливаемая площадь всех помещений, сначала надо рассчитать необходимую мощность источника тепла по формуле.

Формула расчета мощности котла в соотношении отапливаемых помещений:

Q — необходимая тепловая мощность, кВт.

S — отапливаемая площадь всех помещений, м2

Q1 — удельное тепло потребление здания:

80 Вт/м2 — многоквартирный дом более 4 этажей

100 Вт/м2 — офисное здание до 4 этажей

120 Вт/м2 — частный дом не более 4 этажей

пример расчета 90 x 120 / 1000 = 10.8 кВт требуется котел для частного дома 90 квадратных метров.

Далее производим расчет производительности насоса по формуле:

Q2 – подача насоса в м3/ч

Q – необходимая тепловая мощность, кВт.

1.16 – удельная теплоемкость воды, Вт.

t1 – температура воды на выходе из котла в C

t2 – температура воды на входе в котел в C

(t1 – t2 ) это разница температур, обычно задается в зависимости от вида системы отопления, для стандартных радиаторных систем это значение 20 C, теплый пол 5, другие низкотемпературные системы 10 или 15 градусов.

Следующим шагом требуется произвести расчет и определить напор насоса.

Расчет напора циркуляционного насоса

Самое важное замечание: напор циркуляционного насоса зависит не от высоты здания! Напор зависит от гидравлического сопротивления отопительной системы в доме. Поэтому необходимо произвести расчет именно сопротивления труб.

Что нужно знать для расчета напора циркуляционного насоса.

Вам нужна схема (проект) системы отопления дома состоящая из всех комплектующих:

  1. Метраж всех трубопроводов отопления в доме
  2. Диаметр этих труб и их сопротивление в Па/м (в интернете легко можно найти таблицы привязанные к вашим трубам в зависимости от выбранного материала)
  3. Количество поворотов и дополнительных деталей (кран, обратный клапан, вентиль).

Расчет сопротивления рассчитывается по формуле:

H – напор насоса в М.

R – сопротивление прямой трубы (шероховатость), Па/м.

I – общая длина труб в доме

∑ Z – сумма местного сопротивления всех деталей (фитинг, кран, клапан, тройник) Значения этих коэффициентов для деталей трубопровода составляет примерно 30% от потерь в прямой трубе, то есть грубо 1.3

p – плотность перекачиваемой жидкости (вода, незамерзающая жидкость) = 971.6

q – ускорение свободного падения, м/с2. = 9.81

В случаях со старыми зданиями и отсутствия документации по системе отопления можно произвести вариант приблизительного расчета напора циркуляционного насоса, упрощенный вариант формулы.

H – напор насоса в М.

R – потери на трение в прямой трубе системы отопления, Па/м.

Пример расчета напора циркуляционного насоса:

Допустим Вы делаете систему отопления из полипропиленовых труб.

Сопротивление (шероховатость) полипропиленовых труб в среднем по диаметрам применяемых для строительства частного дома составляет 120 Па/м

Ориентировочно на 90 м2 дома уходит 60 метров труб при двухтрубной системе (учитывается длинна от источника тепла до самого дальнего радиатора и обратно) и некоторое количество фитинг деталей по общей длине (20 уголков, 10 тройников, 4 крана, 1 обратный клапан.

120 x 60 x 1.3 = 9360 Па/м.

Основы выбора циркуляционного насоса для отопления

После расчета напора и производительности вам требуется определить рабочую точку, у каждого производителя насосов имеется график с указанием рабочих возможностей всего модельного ряда, как бытовых, так и промышленных. Рассматривая график, например насосов фирмы WILO, нужно найти наиболее близкие показатели. Наиболее оптимальная работа насоса в средней трети графика с гидравлическими характеристиками.

Из расчета примеров для частного дома в 90 м2 с системой отопления из полипропиленовых трубопроводов и алюминиевых радиаторов получается такие данные:

H = 1 м.

Q2 = 0.47 м3/ч.

Как видно из графика Вам подходит насос WILO STAR-RS 25 или 30/2

Модель Star-RS, стандартный циркуляционный

25 или 30/ – Номинальный внутренний диаметр Rp 1″ или 1 1/4″

2 – Номинальная высота подачи [м] при расходе Q = 0 м3/ч

Очень часто эта зона выделена толстой линией, очень редко бывает когда расчетная точка совпадает с гидравлической характеристикой насоса. Чаще всего эта точка лежит между характеристиками двух насосов, при выборе конкретной модели насоса не нужно выбирать самый мощный, поскольку даже менее мощный циркуляционный насос полностью обеспечит систему отопления.

В свободной продаже можно найти и други марки циркуляционных насосов согласно расчетным характеристикам, например при выборе марки GRUNDFOS Вы получите более дорогой, но в тоже время более надежный циркуляционный насос. Конечно присутствуют и более выгодные по цене предложения “ХОЗЯИН”, средний сегмент AQUARIO.

В современном мире становится жить проще, нам помогает продвинутая интеллектуальная техника и самостоятельный расчет и подбор насоса уходит в прошлое.

Компания ГРУНДФОС производит специальные насосы с функцией AUTOADAPT, автоматическая настройка рабочих характеристик GRUNDFOS модель ALPHA2 25/60 с учетом расхода теплоносителя сопративление труб.

Анализируя нагрузку на отопительную систему, насос сам производит расчет и обеспечивает баланс между максимальным уровнем комфорта и минимальным энергопотреблением. GRUNDFOS ALPHA2 спроектированы для циркуляции жидкостей в системах отопления.

Источник: http://www.kasskad.ru/podbor-nasosa-tsirkulyatsii-sistemy-otopleniya-doma.html

Напор насоса как определить производительность

Как определить требуемый расход и напор насоса

полезная мощность Nп-это мощность затрачиваемая на сообщение жидкости энергии. Полная мощность равна произведению удельной энергии жидкости на массовый расход

(Вт) (кг/с)

Мощность на валу насоса(Nв)-это мощность потребляемая насосом или затрачиваемая. Nв>Nп в следствии потерь энергии.

(ВТ)

(КПД) насоса=

-объемный КПД=(отношение действительной подачи к теоретической)

Объемный КПД учитывает потери производимости при утечках жидкости через зазоры и сальники насоса, а так же в следствии неодновременного открытия клапанов на всасывающей и нагнетательной (высотах)? и выделении газов при движении жидкости в области пониженного давления.

-гидравлический КПД=(отношение удельной энергии действительной к теоретической)

-механический КПД-возникает за счет механического трения в насосе.

Мощность давления:

-КПД насосной установки.

Мощность насосной установки

B-коэффициент запаса мощности, который учитывает потери энергии на преодоление инерции покоящийся жидкости. С увеличением мощности давления, коэффициент запаса мощности уменьшается.

21.Принцип работы центробежного насоса

Устройство:

Основной рабочий орган ц-б насоса – свободно вращающееся внутри спиралевидного корпуса колесо, насаженное на вал. Между дисками колеса – лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса.

Внутренние поверхности дисков и поверхности лопаток образуют т.н. межлопастные каналы колеса, при работе заполненные перекачиваемой жидкостью.

Всасывание и нагнетание жидкости происходит равномерно и непрерывно под действием центробежной силы, возникающей при вращении колеса.

Принцип работы:

При переходе жидкости из канала рабочего колеса в корпус происходит резкое снижение скорости, в результате чего кинетическая энергия жидкости превращается в потенциальную энергию давления, которое необходимо для подачи жидкости на заданную высоту.

При этом в центре колеса создается разрежение, и вследствие этого жидкость непрерывно поступает по всасывающему трубопроводу в корпус насоса, а затем в межлопастные каналы рабочего колеса.

Если перед пуском ц-б насоса всасывающий трубопровод и корпус не залиты жидкостью, то возникающего разрежения будет недостаточно для подъема жидкости в насос (из-за зазоров между колесом и корпусом). Чтобы жидкость не выливалась из насоса, на всасывающем трубопроводе устанавливают обратный клапан.

Для отвода жидкости в корпусе насоса есть расширяющаяся спиралевидная камера: жидкость сначала поступает в эту камеру, а затем в нагнетательный трубопровод.

22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса

Параллелограмм скоростей – графическое изображение относительной (W) и окружной (U) скоростей.

Построив параллелограмм скоростей, находим скорость С1на входе жидкости в рабочее колесо, направленную под углом α1, и скорость С2 на выходе из колеса, направленную под углом α2. При движении жидкости внутри рабочего колеса её абсолютная скорость увеличивается от С1 до С2.

Основное уравнение ц-б насоса устанавливает зависимость между теоретическим напором Нт, создаваемым колесом, и скоростью движения жидкости в колесе. Это уравнение называется уравнением Эйлера:

Где

На практике насосы изготавливают таким образом, чтобы α1≈90о, т.е. cosα1= 0, это условие безударного входа жидкости в колесо. Основное уравнение принимает вид:

studfiles.net

Насосы типа Circulation оборудование

Головка создается при работе насосного устройства, чтобы выдерживать гидродинамические потери, возникающие в трубах, радиаторах, клапанах, соединениях.

Другими словами, голова представляет собой количество гидравлического сопротивления, которое устройство должно преодолеть. Чтобы обеспечить оптимальные условия для перекачки охлаждающей жидкости через систему, индекс гидравлического сопротивления должен быть ниже, чем значение головки.

Слабая колонна воды не сможет справиться с задачей, но чрезмерный столбец воды может вызвать шум в системе.

Расчет головки циркуляционного насоса требует предварительного определения гидравлического сопротивления. Последнее зависит от диаметра трубопровода и скорости движения хладагента вдоль него. Для расчета гидравлических потерь вам необходимо знать скорость хладагента: для полимерных трубопроводов — 0,5-0,7 м / с, для труб из металла — 0,3-0,5 м / м.

На прямых участках трубопровода показатель гидравлического сопротивления находится в диапазоне 100-150 Па / м. Чем больше диаметр трубы, тем меньше потеря.

Чтобы вычислить потерю давления для местного резистора, используйте формулу: Z = Σz x V2 x ρ / 2

В этом случае ζ — коэффициент локальных потерь, ρ — индекс плотности теплоносителя, V — скорость переноса хладагента (м / с). Затем необходимо суммировать локальные постоянные и постоянные значения, которые были рассчитаны для плоских частей.

Результирующее значение будет соответствовать минимально допустимой направляющей насоса. Если в доме имеется очень разнообразное отопительное устройство, рассчитайте давление на голову для каждой ветки отдельно.

Необходимо учитывать следующие значения потерь для элементов системы:

    — котел — 0,1-0,2;     — терморегулятор — 0,5-1;     — Смеситель составляет 0,2-0,4.

В качестве альтернативы вы можете рассчитать головку отопительного насоса в соответствии со следующей формулой:Hpu = RxLxZF / 10000 [м]

Таким образом, головка насоса HPU, R — потери, вызванные трением в трубах (измеренные в Па / м, могут рассматриваться как базисные средства 100-150 Па / м), L — длина верхней и нижней труб длиннейших нитей или сумма ширина, длина и высота здания, умноженная на 2 (измеряется в метрах), ZF — коэффициент термостатического клапана (1,7) клапаны / принадлежности (1,3), коэффициент преобразования 10000 единиц (м и Па).

Мощность и коэффициент полезного действия насоса

Мощность — работа в единицу времени — применительно к насосам можно определять по нескольким соотношениям в зависимости от принятых единиц измерения подачи, давления или напора. Полезной мощностью называют мощность, сообщаемую насосом подаваемой жидкости. Если подача Q выражена в м3/с, а давление насоса — в Па, то полезная мощность Nп, кВт, составит

При массовой подаче QM выраженной в кг/с,

 Если напор насоса выражен в метрах столба перекачиваемой жидкости, то

 Для воды при температуре 20 °С и q = 9,81 м/с2

Если же подача воды выражена в м3/ч, а напор — в м вод. ст., то

Если мощность необходимо выразить в л. с, то ее вычисляют по следующей формуле:

Мощность насоса, т. е. мощность, потребляемая насосом, 

 где η — КПД насоса.Из формулы (2.46) видно, что КПД насоса представляет собой отношение полезной мощности к мощности насоса

Коэффициент полезного действия насоса учитывает гидравлические, объемные и механические потери, возникающие при передаче энергии перекачиваемой жидкости.

Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него, т. е.

во всасывающем аппарате, рабочем колесе и нагнетательном патрубке. Гидравлические потери оценивают гидравлическим КПД насоса: 

 где Nn — полезная мощность насоса; Nг — мощность, затраченная на преодоление гидравлических сопротивлений в насосе.

Объемные потери возникают вследствие перетекания части жид кости из области высокого давления в область пониженного давления (во всасывающую часть насоса) и вследствие утечек жидкости через сальники. Объемные потери оценивают объемным КПД насоса

 где N — мощность, потерянная в результате перетекания жидкости и утечек.

 где Nм— мощность, затраченная на преодоление механических потерь.

Механические потери слагаются из потерь на трение в подшип-никах, сальниках и разгрузочных дисках рабочего колеса, а также из потерь на трение наружной поверхности рабочего колеса о жидкость.

Механические потери оценивают механическим КПД насоса.Коэффициент полезного действия насоса равен произведению гидравлического, объемного и механического коэффициентов полезного действия 

 и характеризует совершенство конструкции, а также качество изготовления насоса. КПД крупных насосов доходит до 0,92, а КПД малых насосов — до 0,6 — 0,7 и менее. Мощность двигателя, приводящего в движение насос, всегда больше мощности насоса. Если вал насоса соединен с валом двигателя с помощью муфты, то установочную мощность двигателя определяют по формуле

 где kдв — коэффициент запаса мощность двигателя.В зависимости от мощности двигателя N, кВт, и условий его работы следует принимать приведенные ниже коэффициенты запаса мощности:  

N

Источник: https://www.tproekt.com/podbor-nasosa-po-naporu-i-rashodu/

Напор насоса – это что такое? Как определить требуемый напор насоса

Как определить требуемый расход и напор насоса

Насос – довольно нужная и полезная вещь в каждом доме, особенно в частном. С его помощью можно накачать воды из колодца, ликвидировать последствия наводнения в подвале и погребе, подкачать колеса и надуть матрас к приезду гостей.

Сфера использования насосов и наносных станций достаточно велика, современные производители предлагают широкое разнообразие моделей, каждая из которых имеет свое предназначение.

В процессе выбора в первую очередь следует сконцентрировать внимание на типе насоса, его назначении и, конечно же, тех основных показателях, которые характеризуют его эффективность. Напор насоса – это как раз один из таких показателей.

Это второй после производительности показатель эффективности использования оборудования. В рамках данного материала мы не только попробуем разобраться в том, что такое рабочий напор насоса, его значении, но и способах расчета.

Общая информация

Напор насоса – это с научной точки зрения сила давления, созданная его лопастями или поршнями, необходимая для того, чтобы протолкнуть воду или воздух. Основной единицей измерения данного показателя являются метры. Не стоит пугаться, увидев на упаковке именно такое обозначение – оно имеет научное обоснование.

Расход насоса, напор – эти показатели довольно часто путают. И вот тут важно понимать, что расход насоса представляет собой количество жидкости, проходящей за него в заданную единицу времени, чаще представлено кубометрами в час. Попросту говоря, это способность насоса перекачивать определенный объем.

Почему именно в метрах

Насос для напора воды и любой другой жидкости является весьма популярным приспособлением, без которого трудно представить жизнь в частном доме. Многие потребители до сих не понимают, почему измерение величины напора ведется именно в метрах.

Напор центробежного насоса, впрочем, как и любого другого, принято измерять в метрах. Конечно, подобная система рождает много вопросов. Прежде всего, так повелось исторически, все уже давно привыкли к такому обозначению и не намерены ничего менять.

Ну и, конечно, это удобно, ведь не приходится прибегать к использованию других единиц измерения, производить сложные математические расчеты.

Величина напора, исчисляемая в метрах, дает нам информацию о том, что насос может поднять жидкость на данную высоту.

Как определить требуемый напор

Выбирая насос в первую очередь необходимо отталкиваться от его назначения, специфики использования и основных характеристик его работы. Напор насоса – это, кстати говоря, основная характеристика, которая указана производителем в инструкции.

Расчет напора насоса не требует особых навыков, специальной квалификации, с ним под силу справиться даже обывателю. Понятно, что во многом на результаты расчетов влияет конструкция выбранного насоса. В каждом случае результат будет индивидуальным.

Напор погружного насоса

Погружные насосы чаще всего устанавливаются в глубинные скважины, колодцы – словом там, где самовсасывающему насосу просто не справиться с перекачкой воды.

Такая разновидность на сегодняшний день является весьма распространенной: конструкция представлена достаточным разнообразием моделей и модификаций, каждая из которых способна удовлетворить все потребности современных покупателей.

Многие эксперты настоятельно рекомендуют приобретать насосы импортного производства, но даже среди российских компаний достаточно достойных производителей, продукция которых отличается высочайшей производительностью, эффективностью работы и, что не менее ценно, доступностью по цене.

В процессе эксплуатации насос полностью погружают в воду, а при приближении жидкости к критической отметке он отключается в автоматическом режиме до того, пока уровень воды не поднимется до необходимой нормы.

Именно поэтому одним из самых безопасных и надежных считается именно погружной насос. Напор его исчисляется по формуле:

H = H высота + H потери + H излив, где:

H высота – перепад высот между местом нахождения насоса и наивысшей точкой системы водоснабжения;

H потери – возможные гидравлические потери, которые возникают при движении жидкость по трубе, они в первую очередь связаны с трением жидкости о стенки трубы;

H излив – тот напор на излив, который позволяет пользоваться всеми сантехническими приборами (обычно находится в диапазоне 15-20 метров).

Напор циркуляционного насоса

Мы уже установили, что напор насоса – это давление, необходимое для того, чтобы протолкнуть жидкость на заданную высоту. Циркуляционные насосы нашли себя в системах отопления, именно с их помощью обеспечивается бесперебойная циркуляция источника тепла в системе.

Конечно, к выбору циркуляционного насоса необходимо подойти более осознанно и требовательно, понимая, что от этого во многом зависит эффективность и бесперебойность его использования, что так важно для многоквартирных домов.

Такие насосы надежны, эффективны и отлично показали себя даже в многоквартирных домах. Безусловно, такой насос также должен подбираться исходя из напора. Напор циркуляционного насоса не имеет никакой связи, а, соответственно, зависимости от высоты здания.

Главное здесь – гидравлическое сопротивление трассы. И вот тут для расчета потребуется следующая формула:

H = (R * L + Z сумма) / ( p * g ), где:

R – потери;

L – протяженность трубопровода, измеряющаяся в метрах;

Z сумма – суммарное число коэффициентом запаса для конструктивных элементов трубопровода (для фитингов и арматуры эта величина равна 1,3; для термостатических вентилей – 1,7; а для смесителей – 1,2);

р – плотность воды, из школьного курса физики мы помним, что она составляет 1000 кг/м3;

g – ускорение свободного падения, величина которого берется в среднем значении – 9,8 м/с2.

Получается, зная все основные параметры определить тот напор воды, который необходим вам в конкретной ситуации, довольно просто, для этого вам не придется привлекать специалистов.

Может ли монтаж повлиять на величину напора

Учитывая простоту, даже примитивность конструкции насосов, а также наличие подробной инструкции монтажа, многие современные мужчины берутся за работы самостоятельно, то есть без помощи профессионалов.

Такое поведение чаще всего связано с желанием сэкономить: далеко не все готовы заплатить не только за насос или насосную станцию, но и услуги мастера. Учитывая, что напор насоса – это основная характеристика его деятельности, никто не готов терять.

Именно поэтому вопрос напрашивается сам собой: насколько монтаж, проведённый самостоятельно может сказаться на величине напора.

Казалось бы, подключаем одну трубу к всасывающему патрубку, другую к тому, что отвечает за напор, подаем питание – и готово. На практике малейшая ошибка не только способна негативно сказаться на напоре воды, но и существенно сократит продолжительность работы.

Давайте вместе разберем наиболее распространенные ошибки, которые допускают многие из нас:

  • Диаметр всасывающего патрубка. Довольно часто диаметр трубопровода на практике оказывается меньше диаметра всасывающего патрубка. Такая конструкция в случае подключения увеличивает сопротивление со стороны всасывающей магистрали, тем самым сокращая величину глубины всасывания. Выражаясь простым языком: уменьшенный по диаметру трубопровод просто не в состоянии пропустить тот размер жидкости, который с легкостью всасывает и перекачивает насос.
  • Прямое подключение к обычному шлангу. Такая система не особо критична при условии использования насоса небольшой производительности. В противном случае под воздействием большого давления, создаваемого насосом, шланг сожмется, его сечение значительно сократится, а вода просто не сможете пройти сквозь него. Это в лучшем случае приведет к прекращению подачи воды, в худшем – к поломке насоса без возможности его последующего ремонта.
  • Большое число изгибов и поворотов в трубопроводе. Такой вариант монтажа не повышает величину сопротивления, соответственно уменьшает производительность и величину напора насоса. Именно поэтому так важно привести количество изгибов и поворотов к минимальному значению, если вы хотите использовать приобретенный и установленный насос на все 100%.
  • Герметизация. Именно ввиду недостаточной герметизации на всасывающем участке трубопровода могут возникать существенные потери воды. Плохая герметизация не только сокращает напор воды, но и сопровождает процесс работы насоса излишним шумом.

Тонкости выбора

Итак, если вы столкнулись с выбором насоса, как погружного, так и циркуляционного, впервые, настоятельно рекомендуем воспользоваться всеми советами и рекомендациями.

Прежде всего, доверяйте только проверенным производителям, качество продукции которых не вызывает ни малейших нареканий.

Не стоит пренебрегать помощью профессионалов: они из всего представленного многообразия помогут выбрать оптимальный вариант, отталкиваясь от основных требований особенностей эксплуатации.

Подводим итоги

В рамках данного материала мы рассмотрели, что же такое напор насоса, что влияет на его величину, и как самостоятельно рассчитать ее. Надеемся, что данные советы и рекомендации помогут вам избежать принципиальных ошибок и использовать прибор на все 100%.

Источник: https://FB.ru/article/338010/napor-nasosa---eto-chto-takoe-kak-opredelit-trebuemyiy-napor-nasosa

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.