ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Регулируемый блок питания с защитой от превышения тока нагрузки | Все своими руками

ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

В статье описывается простой блок питания на трех микросхемах — К157ХП2, LM358N, К142ЕН19 и транзисторе КТ827А. Выходное напряжение можно регулировать в пределах от 1,3В до 24В, при этом номинальный ток нагрузки равен 3А. Схема стабилизатора блока питания имеет защиту от превышения тока нагрузки.

Схема блока питания показана на рисунке 1.

В качестве сетевого трансформатора применен трансформатор от старых телевизоров ТС-180.

Тс 180 datasheet pdf

С трансформатора сматываются все вторичные обмотки, оставляют только первичную. Наматывают новую вторичную обмотку, состоящую из 180 витков обмоточного провода диаметром 1,5мм. По 90 витков на каждой катушке трансформатора.

При этом выходное переменное напряжение на выходе трансформатора в режиме ХХ должно быть примерно 22 вольта.

Превышать этот уровень не следует, так как после выпрямления диодами VD1 и VD2 и фильтрации конденсатором С3, состоящего из трех конденсаторов по 2200,0×50В, значение этого напряжения будет уже равно его амплитудному значению 32 вольта, а это предел напряжения питания микросхемы DA1 LM358N.

LM358N Datasheet PDF

Схема выпрямителя двухполупериодная со средней точкой. Заметьте, что средняя точка соединена с общим проводом через резистор R1, являющий датчиком тока для схемы защиты от короткого замыкания.

В качестве регулирующего транзистора применен отечественный биполярный составной n-p-n транзистор КТ827А

Работа схемы

Стабилизатор напряжения блока питания реализован на операционном усилителе микросхемы DA1.2, являющимся усилителем ошибки.

Опорное напряжение для этого усилителя берется с микросхемы стабилизатора напряжения DA3 К157ХП2, имеющей внутренний термостабильный источник опорного напряжения (ИОН) 1,3 В.

Выводы этого стабилизатора скоммутированы на минимальное выходное напряжение, т.е. 1,3В. Отсюда и минимальное выходное напряжение блока питания, ему равное.

К157ХП2 Datasheet PDF

На инвертирующий вход DA1.2 подается часть выходного напряжения блока питания через резистивный делитель R10 и R11. От величины резистора R11 зависит максимальное выходное напряжение БП.

Если вам нужно другое максимальное напряжение, то его можно вычислить по формуле приведенной ниже. Допустим нам нужно на выходе максимальное напряжение 12 вольт. Переменное сопротивление оставляем с величиной 1,5 кОм.

Опорное напряжение у нас 1,3 В. Вычисляем R10.

С выхода усилителя ошибки сигнал поступает через ограничивающий резистор R9 на базу управляющего транзистора VT1. В сбалансированном режиме схемы напряжение на движке переменного резистора R10 всегда будет равно напряжению ИОН.

«Шаг влево, шаг вправо» этого напряжения будет вызывать соответствующую реакцию усилителя ошибки. Допустим, по какой-то причине просело напряжение на выходе БП, уменьшилось напряжение и на инвертирующем входе DA1.2 относительно напряжения ИОН 1,3В.

Значит, увеличится выходное напряжение ОУ и соответственно на базе транзистора VT1. Транзистор приоткроется до такого состояния, при котором напряжение на движке R10 сравняется с 1,3В. Если напряжение на выводе 2 будет больше 1,3 вольта, то транзистор VT1 будет закрываться. Я это к чему.

Что если вообще выключить опорное напряжение на выводе 3, то регулирующий транзистор полностью закроется. А на этом и построена схема защиты от превышения тока нагрузки.

Микросхема DA3 имеет вывод Вкл\Выкл – 9. Если на его подать напряжение больше 2 вольт, то стабилизатор этой микросхемы начинает работать в штатном режиме, если это напряжение снять, то стабилизатор выключается, что мне очень нравится, полностью, выходное напряжение практически равно нолю.

А теперь рассмотрим полный алгоритм работы схемы защиты. Допустим нам надо огранить ток нагрузки на уровне 3А. Протекая через резистор R1, этот ток вызовет на нем падение напряжения U=IxR =3×0,05=0,15B. Это напряжение усилится ОУ DA1.1 до уровня, в нашем случае, равном 5В.

Что бы получить такое напряжение, надо, чтобы Кус этого усилителя был равен 5B/0,15И = 33,33 (3). А Кус зависит от соотношения величин резисторов R2 и R4. Кус = R4/R2, 4700/100 = 47. Естественно величину резистора R4 надо уменьшить до 3300Ом. С выхода усилителя напряжения датчика тока сигнал подается на делитель напряжения 1:2 – R5 и R6.

В конечном итоге на вход компаратора, роль которого выполняет параллельный стабилизатор напряжения DA2 К142ЕН19 с напряжение ИОН, равному 2,5 вольта, подается сигнал величиной два с половиной вольта.

Если ток нагрузки увеличится, то увеличится и напряжение на входе 1 микросхемы DA2 относительно напряжения ИОН, а это приведет к открыванию внутреннего транзистора данной микросхемы, возникнет ток, протекающий от плюсовой шины через резистор R7, светодиод оптрона U1, К-Э внутреннего транзистора DA2, общий провод.

Светодиод засветится, тиристор оптрона откроется и зашунтирует вывод 9 DA3 на общий провод. Стабилизатор DA3 выключится, пропадет напряжение на выводе 3 микросхемы DA1.2, и наконец-то закроется транзистор VT1. Напряжение на выходе БП упадет практически до нуля.

Для возвращения схемы после устранения перегрузки в рабочее состояние достаточно нажать и отпустить кнопку SB1. Имейте ввиду, что время срабатывания защиты очень маленькое. Поэтому могут быть проблемы с подключением емкостных нагрузок, Если время заряда емкости нагрузки будет больше времени срабатывания защиты, то защита постоянно будет такую нагрузку отключать.

На этом все. Успехов. К.В.Ю.

Скачать статью

Скачать “Регулируемый-блок-питания-с-защитой-от-КЗ” Регулируемый-блок-питания-с-защитой-от-КЗ.rar – Загружено 239 раз – 133 KB

Цоколевка оптрона АОУ103

Возникли вопросы по распиновке данного оптрона. Вот два варианта ее из двух разных справочников. Так что лучше проверить цоколевку вашего оптрона тестером.

1 034

Источник: http://www.kondratev-v.ru/bloki-pitaniya/reguliruemyj-blok-pitaniya-s-zashhitoj.html

Защита от переполюсовки и КЗ зарядного устройства, блока питания своими руками

ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

  • 1 Вариант 1
  • 2 Вариант 2
  • 3 Вариант 3
  • 4 Итог

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте.

Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой.

Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

 Эдуард Орлов –  

Прикрепленные файлы: СКАЧАТЬ.

Источник: https://volt-index.ru/muzhik-v-dome/kak-sdelat-zashhitu-ot-perepolyusovki-dlya-bloka-pitaniya.html

:: УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ ::

ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 – TL082 сдвоенный ОУ
  2. 2 – 1n4148 диод
  3. 1 – tip122 транзистор NPN
  4. 1 – BC558 PNP транзистор BC557, BC556
  5. 1 – резистор 2700 ом
  6. 1 – резистор 1000 ом
  7. 1 – резистор 10 ком
  8. 1 – резистор 22 ком
  9. 1 – потенциометр 10 ком
  10. 1 – конденсатор 470 мкф
  11. 1 – конденсатор 1 мкф
  12. 1 – нормально закрытый выключатель
  13. 1 – реле модели Т74 “G5LA-14”

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания.

Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается “высокий” уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается “низкий” уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в “высоком уровне”, его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, “высокий уровень” будет приближаться к +12 В. Когда ОУ находится в “низком уровне”, его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением.

Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него.

Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт – 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его.

Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка.

Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.

Поделитесь полезными схемами

ЭЛЕКТРОННЫЙ ЗАМОК ДЛЯ ВХОДНОЙ ДВЕРИ   Электронные дверные замки для дома. Развитие высоких технологий уже прочно и надежно вошло в нашу жизнь, и захватила все ее сферы. Разработки в этой сфере проявляются в полную силу в окружающем мире, ведь в нашем мире практически невозможно встретить человека который бы не пользовался мобильными телефонами, компьютерами и другой оргтехникой.
ДОРАБОТКА ПИТАНИЯ ЧАСОВ   У многих имеются стоят простые настольные электронные часы с большим ЖКИ дисплеем и питающимися от небольшого дискового литий ионного элемента на три вольта. Часы хороши всем – и небольшая цена, и надёжность, и многофункциональность. Но вот одна проблема – периодически приходится менять элемент питания. Вроде ничего сложного тут нет, но во первых – батарейка садится как правило в самый неподходящий момент, а во вторых – стоит она почти половину цены самих часов.
ЭЛЕКТРОННЫЕ СВЕТОДИОДНЫЕ КОСТИ   Светодиодный кубик на микроконтроллере, который если потрясти покажет случайно выпадающую цифру от 1 до 6. Аналог обычных игральных костей.
СТРОБОСКОП ДЛЯ ДИСКОТЕКИ    Отражатель стробоскопа позволит направить максимум света. Изготовить его можно из алюминиевой полоски либо картона. 

Источник: http://samodelnie.ru/publ/samodelnye_bloki_pitanija/ustrojstvo_zashhity_dlja_ljubogo_bloka_pitanija/3-1-0-250

Лабораторный блок питания своими руками 0-30В 0-5А

ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301.

Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В.

В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317.

Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3.

На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А.

Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к.

LM317 будет очень сильно нагреваться.

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В)  откроются транзисторы.

Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока.

Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2.

Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений.

В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.

Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом

Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812.

Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13.

Стабилизатор 7812 желательно установить на небольшой радиатор.

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2(положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение.

Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью.

Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится.

Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).

Как видим, в первоисточнике используется источник опорного напряжения LM113.

Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В).

Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения.

Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В.

Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора.

Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.

Как и обещали, плату блока можно скачать тут:

Ну и демонстрация работы лабораторного блока питания:

Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью — так станет интереснее!

Работы наших читателей

Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.

Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт.

Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех — китайский. Лицевую часть делал в программе FrontDesigner 3.

0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.

Прекрасную работу прислал нам Роберт Ганеев  из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.

by HyperComments

Источник: http://diodnik.com/laboratornyj-blok-pitaniya-svoimi-rukami-0-30v-0-5a/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.