Чем опасны провалы напряжения в сети и как от них защититься?

Содержание

Негативные явления в электросети – их влияние на нагрузку и способы борьбы

Чем опасны провалы напряжения в сети и как от них защититься?

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение.

Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор.

Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП).

Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий.

Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям.

У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного.

В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы.

В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки.

В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие “нормы качества электрической энергии в системах электроснабжения общего назначения“.

ПараметрНоминалПредельно
Напряжение, V220V ±5%220V ±10%
Частота, Hz50 ±0,250 ±0,4
Искажения, %812
Провалы, сек330
Перенапряжения, V280380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории.

Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973.

Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%.

Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе.

Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности.

На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как “свет мигнул”.

В подобной ситуации все незащищенное компьютерное оборудование “перезагрузится” или “зависнет”.

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого “перекоса фаз” — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение.

Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля.

В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействияСледствие негативного воздействияРекомендуемые меры защиты
Импульсный провал напряженияНарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах.Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряженияПерегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения.Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряженияВыключение оборудования. Потеря данных в компьютерных системах.Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжениеПерегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряженияНарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения.Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры.Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения)Перегрузка трехфазного оборудования.Выравнивания нагрузки по фазам. в исправности силовой кабельной сети.
Отклонение частоты сетиНарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети.Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств.

Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования.

Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Чем опасны провалы напряжения в сети и как от них защититься?

Чем опасны провалы напряжения в сети и как от них защититься?
Провалы напряжения в сети представляют серьезную проблему многим приборам, ведь они могут понизить качество работы приборов, а также вызвать сбой в работе устройств, подключенных к такой сети.

Данное явление встречается намного чаще, чем обычное прерывание. Поэтому следует знать, чем опасны провалы напряжения, какие причины их возникновения, как защититься от данного вида проблем и как с ними бороться.

Как раз об этом пойдет речь в данной статье.

Что такое провал напряжения

Согласно европейским стандартам провалом напряжения является резкое снижение эффективных величин напряжения до показателя от 90 процентов до 1 процента от установленного. После происходит быстрое поднятие или восстановление напряжения. Такие провалы кратковременны, их продолжительность бывает от половины периода до одной минуты.

Обычное рабочее состояние напряжения в электросети не должно опускаться ниже 90 процентов. Если происходит падение всего на 1 процент от заданного эффективного значения, то это является прерыванием.

Соответственно провал и прерывание – это не одно и тоже. Прерывание появляется только после срабатывания предохранителя. Таким образом пропадание напряжения в электросети распространяется в виде провала по всей распределительной сети.

Большая нагрузка

При подключении некоторых потребителей к сети создается большая нагрузка. К таким приборам относятся, например, мощные электродвигатели, которые при запуске используют существенно большие токи, чем номинальные. Если провода рассчитаны только для номинального тока, то соответственно пусковые токи могут серьезно снизить напряжение в сети.

Такое явление напрямую связано с резервом электросети полностью в соответствии с мощностью, а также с сопротивлением в месте общего соединения, и в точном соответствии с сопротивлением провода.

Провалы напряжения, вызванные пусковыми токами, имеют низкие данные падения напряжения, и в то же время характеризуются достаточно большей продолжительностью в сравнении с пробелами вызванными неисправностями распределительных электросетей, и могут продолжатся от 1 до 10 секунд.

Существуют методы устранения проблем у приборов, которые произошли из-за сопротивления проводов.

Приборы с большой нагрузкой можно подключить к сети с помощью применения точек общего соединения или с помощью специальной вторичной обмотки силового трансформатора.

Однако, если данная проблема заключается в полном сопротивлении в точке общего соединения, то для защиты и устранения проблемы необходимо принимать более серьезные действия.

Один из вариантов разрешения данной проблемы заключается в применении специализированного преобразователя частоты, с его помощью достигается снижение величин провалов благодаря распределению дополнительной нагрузки. Еще одним дополнительным решением данной проблемы может быть использование устройств, благодаря которым цепи питаются с меньшим сопротивлением. Все же следует отметить, что данное решение является затратным.

Эта проблема представляет достаточно серьезную опасность для электропотребителей и может привести к плохим последствиям, например, сгорание двигателя в электроприборе.

Если проблему провалов не удалось решить способами, приведенными выше, то их влияние на приборы можно устранить с помощью стабилизаторов, электронных регуляторов, а также динамических восстановителей напряжения.

Также важно помнить, что провалы могут быть в любой сети, не зависимо от класса напряжения.

Сетевое происхождение

Распределение электросети достаточно сложный процесс. От топологии сети, нагрузки генератора в конкретной точке общего соединения, а также относительной величины сопротивления зависит уровень воздействия определенного повреждения на каком-то определенном участке на другие участки электросети.

Продолжительность появившегося провала напрямую зависит от того, сколько необходимо времени защитной системе для обнаружения и, в последствии, его устранения. Обычно для этого необходимо пару миллисекунд. Все же следует помнить, что существуют повреждения, которые имеют случайный характер, например, если упадет дерево на воздушные линии электропередачи.

Однако скорость устранения зависит от характера повреждения и параметров линии и защит. Если это линия с изолированной нейтралью, то при однофазном замыкании на землю повреждение может ликвидироваться за время до двух часов – на время отыскания повреждения персоналом.

Двухфазное замыкание, как правило, отключается за доли секунды действием защит от повреждений.

В случае полного отключения определенного участка на достаточно продолжительное время с помощью автоматики, которая служит в качестве защиты, все устройства, находящиеся на участке, должны быть полностью обесточенными до того времени пока не будет устранена проблема, и проведена специалистами проверка, а также восстановлено электроснабжение на поврежденном участке. Устройство автоматического повторного включения может упростить эту ситуацию, и в то же время может посодействовать возникновению большего количества провалов. Автоматическое повторное включение восстанавливает питание после выдержки времени в случае срабатывания защитной автоматики. Выдержка времени зависит от требований к электроснабжению в электрической сети. Для ответственных потребителей выдержка времени составляет доли секунды, для других категорий потребителей выдержка времени может быть увеличена до нескольких секунд.

В случае полного устранения повреждения происходит повторный запуск оборудования, и питание на аварийном участке переходит в стабильное, нормальное состояние.

Однако, если при автоматическом повторном включении повреждение не было ликвидировано, то срабатывают защитные устройства и с минимальной выдержкой времени обесточивают поврежденный участок электрической сети.

Для предотвращения развития аварийной ситуации повторное включение обесточенного участка допускается только после выявления и устранения повреждения.

Однако если исправить повреждение с помощью вторичного включения не получилось, то необходимо сделать повторное включение защитной автоматики.

Повторение данного процесса будет соответствовать количеству запусков пользователем в программу автоматического поворотного выключателя.

При этом нужно учитывать, что при каждой осуществляемой попытке вторичного запуска на всех других участках будет повторный провал напряжения, это означает, что другие пользователи будут испытывать целую череду провалов.

Способы защиты

Итак, вы узнали, что собой представляет данное явление, теперь поговорим о том, как может быть организована защита от провалов напряжения в сети.

Если защитить нужно маломощную нагрузку, достаточно установить источник бесперебойного питания (ИБП).

Такое решение может применяться даже на промышленных объектах для аварийного сворачивания технологических процессов и безопасного сохранения информации.

Если же нужна защита мощной нагрузки от провалов напряжения, в этом случае необходимо использовать специализированные системы, которые осуществляют динамическое восстановление напряжения.

Такие системы способны компенсировать недостающую часть напряжения, однако работает данный вид защиты непродолжительное время.

Именно поэтому они не способны защитить от длительных провалов напряжения в электрической сети.

Вот и все, что хотелось рассказать о том, что такое провалы напряжения в сети, какие причины их возникновения и как можно защитить оборудование от этого явления. Следует отметить, что к провалам наиболее чувствительно компьютерное оборудование. Поэтому если в вашей сети наблюдается данное явление, обязательно защитите электронику вышеуказанными методами.

Будет полезно прочитать:

Источник: https://samelectrik.ru/provaly-napryazheniya-v-seti.html

Чем опасен скачок напряжения и как защитить электротехнику

Чем опасны провалы напряжения в сети и как от них защититься?

Скачок напряжения может привести к тому, что в квартире сгорят электрические приборы

Скачки напряжения: почему возникают

В целом, если говорить просто, скачки в электросети возникают при ее перенагрузке. Сеть не справляется с напряжением и начинает работать некорректно. Если скачек электроэнергии незначительный, то электроприборы в целом его не почувствуют.

Однако если сбой электричества серьезный, сопровождающийся короткими замыканиями, это может привести к порче приборов.

Как результат – сгорела техника: телевизор, холодильник, компьютер, при этом в данном случае потребуется либо весьма дорогостоящий ремонт, либо замена прибора.

Скачок напряжения может быть обусловлен сбоем, который может произойти в трансформаторе.

Когда вы включаете в сеть прибор, напряжение общей сети немного подскакивает, однако это совсем не влияет на общую работу техники, подключенной к сети. Еще больший скачек происходит, когда вы отключаете прибор от электропитания.

Но даже если вы и ваши соседи одновременно с многими другими отключат множество приборов, это вряд ли приведет к серьезным скачкам и перенагрузкам, так как сеть имеет защиту на такой случай. Другое дело – предприятия, где одновременно в результате сбоя может отключиться серьезное оборудование, которое потребляет львиную долю всей энергии сети.

Выходит, что потребляемый объем энергии резко сокращается в один момент и не успевает распределиться равномерно, напряжению некуда деваться и оно поступает в приборы, которые подключены к сети.

Другими словами, электричество, которое поступало на предприятия, после отключения не рассеивается бесследно а некоторое время распределяется, вызывая большие перенагрузки.

Почему скачет напряжение в электросети: причины

Если у вас в сеть подключен, например, компьютер, то скачек приведет к тому, что в прибор поступит не 220 В, а намного больше – техника сгорает. Иногда в данном случае достаточно заменить блок питания, в других сгореть может материнская плата или процессор, тогда ремонт будет стоить почти столько же, сколько сам компьютер.

Защита электроприборов в квартире или на территории частного дома возможна, и лучше всего заранее побеспокоиться о возможных скачках, пока у вас ничего не сгорело.

Большая опасность скачков заключается в том, что обнаружить их очень сложно. Если это большой скачек, из-за которого выбило всю технику в доме, то конечно вы его заметите.

Однако если это незначительные скачки, то они останутся необнаруженными, при этом их регулярное возникновение существенно сокращает срок эксплуатации электроприборов.

Регулярные скачки способны «убивать» технику медленно, даже если вы об этом не догадываетесь.

Скачок напряжения в электросети может произойти в связи с тем, что некоторые контакты неправильно подключены

В целом, согласно нормативам, напряжение в сети должно составлять 220 В и отклоняться в большую и меньшую сторону лишь на 10%, тогда как на практике оно может падать до 180 В и менее, либо наоборот повышаться до 270 В и более. Повышение напряжения – гораздо опаснее для электроприборов, однако некоторые из них могут выйти из строя и при резком понижении.

Куда жаловаться: скачки напряжения в электросети

Конечно, если у вас сгорела техника из-за сбоев сети, то кто-то должен быть в этом виноват. Напряжение прыгает, уровень питания нестабильный, почему же вы должны просто так с этим смиряться? Если у вас сгорела дорогостоящая техника из-за сбоев на линии, то нужно обращаться в ответственные органы для разбирательств.

Лучше всего составить коллективное обращение от жильцов подъезда или нескольких пострадавших квартир в управляющую компанию с требованием компенсировать ущерб.

В целом, если в трансформаторе, обслуживающем дом, произойдет обрыв кабеля заземления, то в квартиру может быть направлено напряжение мощностью до 380 В. Конечно, такая сила тока уничтожит все приборы, подключенные в сеть.

В данном случае шансы получить компенсацию довольно высокие.

Однако, например, если сбой в сети произошел не по вине коммунальщиков и техники, обслуживающей дом, а например, из-за грозы, то вы можете получить встречное заявление и доказать вину кого-либо окажется невозможно.

Скачки напряжения в электросети: что делать для защиты

Прежде всего, вы должны помнить, что в грозу пользоваться техникой в доме очень опасно. Именно во время грозы происходят серьезные аварии в сети и возникает напряжение, способное вывести технику из строя.

Поэтому если у вас в грозу есть включенные в сеть приборы, в первую очередь отключите:

  • Холодильник;
  • Компьютер;
  • Телевизор;
  • Стиральную машинку;
  • Микроволновую печь.

Чтобы защитить электрические приборы дома, нужно приобрести реле напряжения.

Что касается ежедневного использования техники в привычных условиях, то существует несколько способов ее защиты.

В целом, все такие способы связаны с использованием дополнительного оборудования, которое «берет удар» при сбоях на себя, это может быть:

  • Реле напряжения;
  • Стабилизаторы напряжения;
  • ИБП.

Что касается реле напряжения, то это специальный прибор, похожий на тройник, через который вы просо подключаете вилку прибора в розетку. Данное примитивное устройство пропускает весь ток через себя и в случае скачков попросту отключит прибор от сети, не позволив слишком большому напряжению попасть в устройство. Обычно на реле есть дисплей, который отображает текущий уровень напряжения.

Второе устройство – это стабилизатор напряжения, это уже полноценная техника, которая пропускает весь ток через себя и в случае небольших колебаний не отключает прибор, а исправляет мощность, направляя в прибор нужное напряжение. В итоге при небольших колебаниях вы даже не обнаружите никаких сбоев, вся техника будет работать так, как и работала.

ИБП или источник бесперебойного питания – это отличное устройство для компьютера, оно не только защищает технику от перенагрузок, но и в случае отключения света способно питать прибор некоторое время, поэтому вы сможете безопасно отключить устройство и сохранить на компьютере всю текущую работу.

Чем опасен скачок напряжения

Скачки напряжения в сети – явление массовое и происходят они из-за перенагрузок на линии.

Защитить технику от скачков можно благодаря специальным стабилизаторам напряжения, при этом если ваши приборы сгорят из-за скачков, то вы имеете все основания для того чтобы требовать от управляющей компании компенсаций.

Самое сложное при требовании компенсировать ущерб – доказать вину, так как иногда сбои происходят из-за погодных явлений или общей загруженности сети потребителями.

Источник: https://zen.yandex.ru/media/id/5c69db1092caa000ae9d63b3/5c7285db55643b00b5d2841f

Провалы напряжения в сети: причины возникновения и защита от них

Чем опасны провалы напряжения в сети и как от них защититься?

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей.

Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба.

В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателя

Обозначения:

  • Т1 – Понижающий трансформатор.
  • RZ – Полное сопротивление на вводе питания.
  • RZ1-RZ3 — Полные сопротивления цепей потребителей.
  • М – мощный асинхронный двигатель.

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс.

То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение.

Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

  • Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
  • Пробои в местах соединений.
  • Старение изоляционного покрытия.
  • Воздействие природных и техногенных факторов.

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз.

В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания.

Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

  • топология цепи;
  • величина полного сопротивления проблемного участка;
  • текущая мощность нагрузки и источника электрической энергии (генератора).

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1.

То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения.

Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

Источник: https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html

Провалы напряжения

Чем опасны провалы напряжения в сети и как от них защититься?

  • 7 октября 2016 г. в 14:52
  • 1930

Провалы напряжения могут привести к серьезным проблемам, например, к сбою в производственных процессах и к снижению качества. Подобные провалы возникают гораздо чаще, чем прерывания. Экономические последствия провалов напряжения часто сильно недооцениваются.

Но что собой представляет провал напряжения на самом деле? Как возникает провал напряжения? Можно ли предотвратить провал напряжения или нужно попытаться ограничить возможный ущерб путем своевременного распознавания? В этой статье подробно освещаются эти вопросы.

Провалы напряжения могут привести к серьезным проблемам, например, к сбою в производственных процессах и к снижению качества. Подобные провалы возникают гораздо чаще, чем прерывания. Экономические последствия провалов напряжения часто сильно недооцениваются.

Но что собой представляет провал напряжения на самом деле? Как возникает провал напряжения? Можно ли предотвратить провал напряжения или нужно попытаться ограничить возможный ущерб путем своевременного распознавания? В этой статье подробно освещаются эти вопросы.

Что собой представляет провал напряжения?

В соответствии с европейским стандартом EN 50160 провалом напряжения считается внезапное понижение эффективных значений напряжения до значения от 90 % до 1 % от заданного, после чего следует непосредственное восстановление напряжения. Длительность провала напряжения составляет от половины периода (10 мс) до минуты.

Рис. 1 Пример провала напряжения

Если эффективное значение напряжения не опускается ниже 90 % от заданного значения, это рассматривается как нормальное рабочее состояние. Если напряжение падает ниже 1 % от заданного значения, это считается прерыванием.

Таким образом, провал напряжения не следует путать с прерыванием. Прерывание возникает, например, после срабатывания предохранителя (тип. 300 мс). Пропадание напряжения в сети распространяется в форме провала напряжения по остальной распределительной электросети.

На рисунке (рис. 2) уточняется разница между провалом, коротким прерыванием и пониженным напряжением.

Рис. 2: Разница между провалом, прерыванием и пониженным напряжением

Как возникает провал напряжения?

1.Токи включения

Одна из известных причин небольшого провала напряжения — это токи включения конденсаторов, двигателей или других устройств. На следующем рисунке можно увидеть, что при запуске двигателя сила тока на короткое время увеличивается.

Падение напряжения на полных сопротивлениях Z и Z1 приводит к незначительному провалу напряжения на распределителе низкого напряжения (зона провала 1) и немного большему провалу напряжения за полным сопротивлением Z1 (зона провала 2).

Рис. 3 «Запуск» двигателей может привести к провалу напряжения

Решение проблем, вызванных подобными провалами, заключается в оптимизации установки. Включение устройств не должно приводить к возникновению критических провалов напряжения.

2. Короткие замыкания в сети низкого напряжения

При замыкании в сети низкого напряжения протекает ток короткого замыкания. Вклад тока короткого замыкания зависит от величины полных сопротивлений Z и Z3. На практике полное сопротивление Z3 больше. Размер полного сопротивления Z3 определяется, в частности, типом и длиной кабеля. Чем больше длина кабеля, тем меньше будет ток короткого замыкания.

Ток короткого замыкания вызывает падение напряжения по полному сопротивлению Z, при этом наблюдается кратковременный провал напряжения на главном распределителе низкого напряжения (зона провала 1).

При коротком замыкании должен сработать предохранитель группы 3. Если до срабатывания предохранителя проходит 100 мс, то на всей установке наблюдается сильный провал напряжения на 100 мс.

Рис. 4 Типичный пример рабочего состояния, при котором провал напряжения возникает в результате короткого замыкания в сети низкого напряжения

Хотя короткие замыкания в сети низкого напряжения встречаются, на практике им часто не уделяют внимания. Короткие замыкания в сетях среднего напряжения более критичны.

3. Короткие замыкания в сети среднего напряжения

Чаще всего провалы напряжения наблюдаются в сетях среднего напряжения. Они могут быть, в частности, вызваны следующими факторами:

  • земляными работами,
  • пробоем соединительной муфты,
  • старением кабеля,
  • коротким замыканием в воздушных сетях (бури, животные и т. п.)

На следующем рисунке (рис. 5) приведена типичная структура сети среднего напряжения. Известные трансформаторные будки / местные распределительные подстанции (зеленые точки) соединены друг с другом по кольцу и подключены к распределительной станции (синие точки).

В кольце всегда имеется разрыв (см. кольцо из зеленых точек справа снизу). При возникновении короткого замыкания по цепи протекает ток короткого замыкания (красная линия). Он протекает до тех пор, пока предохранитель на распределительной станции не отключит кольцо.

Это показано на левом рисунке (в кольце слева вверху).

Таким образом, во время короткого замыкания кратковременно протекает сильный ток. Из-за полных сопротивлений сети это приводит к кратковременному понижению напряжения во всей сети. Это кратковременное понижение напряжения выражается в форме «провала напряжения».

Рис. 5 Большинство провалов напряжения вызывается короткими замыканиями в сети среднего напряжения

Около 75 % провалов напряжения возникает в сети среднего напряжения. Часто они неизбежны для потребителя.

Короткие замыкания в сети высокого напряжения

Замыкания в сети высокого напряжения часто вызываются грозами или (ошибочными) включениями. Последние обычно наблюдаются на концах линий высокого напряжения.

Проблемы, связанные с провалами напряжения

Провалы напряжения могут привести к отказу компьютерных систем, ПЛК-установок, реле и преобразователей частоты. В критических процессах всего один провал напряжения может вызвать высокие затраты, особенно критичны в этом отношении непрерывные процессы.

Примером этому служат литье под давлением, экструзионные процессы, печать или обработка таких пищевых продуктов, как молоко, пиво или прохладительные напитки.

Связанные с провалом напряжения затраты складываются из:

  • упущенной прибыли в результате простоя производственных мощностей,
  • затрат на возобновление производственного процесса,
  • затрат, связанных с задержками поставок продукции,
  • затрат на испорченное сырье,
  • затрат на устранение ущерба, причиненного машинам, приборам и матрицам,
  • затрат на техобслуживание и оплату труда.

Средняя стоимость провала напряжения сильно зависит от отрасли:

  • тонкая химия 190 000 евро
  • микропроцессоры 100 000 евро
  • металлообработка 35 000 евро
  • текстильная промышленность 20 000 евро
  • пищевая промышленность 18 000 евро

Часто процессы протекают без присутствия людей, поэтому провалы напряжения обнаруживаются не сразу. В этом случае, например, возможен незамеченный останов машины для литья под давлением. Когда останов обнаружится, уже будет нанесен ощутимый ущерб.

Клиенты получат продукцию слишком поздно, а пластмасса в машине затвердеет. В типографиях или в бумажной промышленности возможен разрыв бумаги, что может привести даже к пожару. Другой известный пример, это ущерб, нанесенный производителю шин Vredestein в результате провалов напряжения. www.rtvoost.nl

Уязвимость ИТ-установок для провалов и прерывания напряжения

Именно ИТ-установки особенно подвержены влиянию провалов и прерывания напряжения. Это означает, что все процессы, управляемые микропроцессорами, уязвимы в отношении этих сбоев, например,

  • ПЛК-установки,
  • преобразователи частоты,
  • системы управления станками,
  • серверы, ПК и т. д.

На построенной Information Technology Industry Council кривой ITI-CBEMA видно, когда провал напряжения приводит к отказу ИТ-устройств, а когда пик напряжения вызывает повреждение ИТ-устройств.

Хотя модель была разработана для сетей 120 В- 60 Гц, она также используется для устройств, подключенных к сетям 230 В- 50 Гц.

Модель может использоваться производителями в качестве руководства при проектировании.

Рис. 6 Кривая ITI (CBEMA) показывает, когда провал напряжения приводит к отказу ИТ- оборудования

Как можно противостоять провалам напряжения? Провалы напряжения в результате токов включения можно в определенной мере ограничить за счет усовершенствования конструкции установки.

Провалы напряжения в результате коротких замыканий в сети низкого напряжения возникают, как правило, крайне редко. Большинство провалов напряжения вызывается замыканиями в сети среднего напряжения.

Повлиять на причины возникновения подобных провалов невозможно.

Сами провалы можно устранить с помощью следующих устройств:

  • Статические ИБП, источник постоянного напряжения с подключенным за ним инвертором. Это решение часто используется для перехода на аварийное питание от резервного агрегата.
  • Синхронно работающий под нагрузкой маховик (динамические ИБП). При кратком прерывании или провале энергия поступает от маховика. Это решение недешево, оно часто используется в вычислительных центрах.
  • Подключение управляющих и регулирующих установок процесса к стабилизированному источнику электроэнергии.
  • Дооснащение электрической инфраструктуры. Это не всегда возможно и, разумеется, обходится недешево.

Исходя из этого видно, что устранение провалов напряжения обходится недешево. Поэтому своевременное определение провалов напряжения может оказаться очень полезным. С помощью хорошего инструмента создания отчета можно определить причины и принять целенаправленные (и поэтому более экономичные) меры.

Сигналы о провале напряжения

Компания Janitza предлагает широкий ассортимент анализаторов, способных распознавать короткие прерывания и провалы напряжения. Сетевой анализатор UMG 604 непрерывно контролирует более 800 электрических характеристик.

Все каналы проверяются 20 000 раз в секунду, при этом регистрируются короткие прерывания и провалы напряжения и выдаются соответствующие предупреждения. На основании этих событий может быть отправлено сообщение электронной почты или SMS.

Входящий в объем поставки пакет ПО GridVis-Basic позволяет генерировать подробные отчеты.

Рис. 7 Для оповещения о провалах напряжения предусмотрен компактный сетевой анализатор UMG 604

Анализатор UMG 604, установленный на панели ввода питания, представляет собой масштабное и экономичное решение для распознавания, регистрации, сигнализации и оповещения о провалах напряжения.

Измерительное устройство оснащено веб-сервером, благодаря этому без больших затрат и без использования сложного ПО можно напрямую вызывать важнейшие параметры из измерительных устройств.

С помощью встроенного браузера событий провалы и прерывания напряжения можно анализировать и документировать в форме отчетов.

Рис. 8 Сетевой анализатор на панели ввода питания распознает отклонения в напряжении

Компания Janitza предлагает следующие измерительные устройства для распознавания кратковременных прерываний:

  • UMG 604, компактный сетевой анализатор для монтажа на DIN-рейке
  • UMG 508, сетевой анализатор с цветным экраном с интуитивным управлением для монтажа на панели
  • UMG 605, анализатор качества сети класса A для монтажа на DIN-рейке
  • UMG 511, анализатор качества сети класса A с цветным экраном с интуитивным управлением для монтажа на панели

Анализ с помощью GridVis

Базовый пакет программы GridVis (GridVis-Basic) бесплатно поставляется вместе с измерительными устройствами Janitza. С помощью этого пакета, в частности, можно:

  • считывать значения измерений в режиме реального времени,
  • запрашивать архивные данные измерений в форме файлов и графиков,
  • анализировать кратковременные прерывания, переходные напряжения и провалы напряжения,
  • распечатывать полные отчеты EN 50160 «одним нажатием на кнопку» и
  • генерировать простые отчеты качества / ошибок.

Рис. 9 С помощью GridVis можно выполнять даже масштабный анализ.

С использованием встроенного генератора отчетов можно объединять даже периодически возникающие провалы напряжения, короткие прерывания и пики напряжений с помощью кривой ITI-(CBEMA) в наглядные отчеты.

На расположенном ниже рисунке (рис. 10) видно, что возникло три провала напряжения, приведших к остановке установки.

Pис. 10 Отчет о провалах и пиках напряжения на основании кривой ITI

Итог

Провалы напряжения возникают относительно часто, они не всегда распознаются. Экономический ущерб от провалов напряжения больше, чем от прерываний. Путем дооснащения электрической инфраструктуры можно предотвратить целый ряд провалов напряжения.

Использование бесперебойных источников питания или дроссельных катушек может снизить вред, нанесенный провалами напряжения. В некоторых случаях эти меры представляются слишком дорогостоящими. Первым шагом, тем не менее, всегда является распознавание и документирования провалов напряжения.

Компания Janitza предлагает готовые решения, которые устойчиво и надежно осуществляют непрерывный контроль и анализ всех производственных процессов.

За счет использования современных измерительных устройств можно своевременно обнаружить и устранить проблемы, связанные с качеством напряжения. Повышение надежности подачи электроэнергии гарантировано, затраты на техобслуживание снижаются, а срок службы производственной установки увеличивается.

Источник: «ТК Профэнерджи»

Источник: https://www.elec.ru/articles/provaly-napryazheniya/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.