ДОМАШНИЙ УСИЛИТЕЛЬ – ИНВЕРТОРЫ

Содержание

Инвертор своими руками в домашних условиях, схемы

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

В статье вы узнаете как сделать самодельный инвертор, подробно разберем принцип работы данного инвертора, как собрать и протестировать инвертор.

Принцип работы инвертора

Инвертор можно рассматривать как грубую форму ИБП (источник бесперебойного питания). Очевидно, что основное использование инвертора предназначено только для питания обычных электроприборов, таких как фонари и вентиляторы, при сбое питания.

Как следует из названия, основная функция инвертора — инвертировать входное постоянное напряжение (12 В постоянного тока) в гораздо большую величину переменного напряжения (обычно 110 В или 220 В переменного тока).

Прежде чем научиться создавать инвертор, давайте сначала разберемся со следующими основными элементами инвертора и его принципом работы:

Осциллятор : генератор преобразует входной постоянный ток от свинцово-кислотной батареи в колебательный ток или прямоугольную волну, которая подается на вторичную обмотку силового трансформатора. В этой схеме IC 4049 была использована для секции генератора.

Трансформатор : здесь прикладываемое колебательное напряжение повышается в соответствии с соотношением обмоток трансформатора и переменного тока, значительно превышающего входной источник постоянного тока, который становится доступным на первичной обмотке или на выходе инвертора.

Зарядное устройство: во время резервного питания, когда батарея разряжается до значительного уровня, секция зарядного устройства используется для зарядки батареи после восстановления сети переменного тока.

Как построить инвертор

Чтобы четко понять, как построить инвертор, давайте рассмотрим следующие простые детали конструкции:

  • Согласно схеме цепи сначала завершите сборку секции генератора, состоящей из меньших частей и IC. Лучше всего это сделать путем соединения самих компонентов и пайки соединений.
  • Затем установите силовые транзисторы в алюминиевые радиаторы с соответствующим отверстием. Они изготавливаются путем разрезания алюминиевого листа на заданные размеры и сгибания их по краям, чтобы его можно было зажать.
  • Не устанавливайте транзисторы непосредственно на радиаторы. Используйте комплект для изоляции слюды, чтобы избежать прямого контакта и короткого замыкания транзисторов между собой и землей.
  • Прикрепите радиатор в сборе к основанию хорошо проветриваемого, прочного, толстого металлического корпуса.
  • Также закрепите силовой трансформатор рядом с радиаторами, используя гайки и болты.
  • Теперь подключите соответствующие точки собранной монтажной платы к силовым транзисторам на радиаторах.
  • Наконец подключите выходы силового транзистора к вторичной обмотке силового трансформатора.
  • Завершите конструкцию, установив и подключив внешние электрические приборы, такие как предохранители, розетки, выключатели, сетевой шнур и входы аккумулятора.
  • Дополнительная отдельная цепь электропитания, использующая 12 В / 3 А трансформатор может быть добавлена внутрь при необходимости зарядки батареи (см. схему).

Описание цепи

Чтобы лучше понять, как построить инвертор, важно узнать, как работает схема, выполнив следующие шаги:

  • Затворы N1 и N2 IC 4049 сконфигурированы как генератор. Он выполняет основную функцию подачи прямоугольных импульсов в секцию инвертора.
  • Затворы N3 — N6 используются в качестве буферов, поэтому схема не зависит от нагрузки.
  • Переменное напряжение от буферной ступени подается на базу усилителей тока транзисторов Т1 и Т2. Эти транзисторы проводят в соответствии с приложенным переменным напряжением и усиливают его до базы выходных транзисторов Т3 и Т4.
  • Эти выходные силовые транзисторы колеблются в полном разгаре, обеспечивая подачу полного напряжения батареи в каждую половину вторичной обмотки попеременно.
  • Это вторичное напряжение индуцируется в первичной обмотке трансформатора и усиливается до 230 В (переменный ток). Это напряжение используется для питания выходной нагрузки.

Процедура тестирования

Вы также можете понять, как построить инвертор, сконцентрировавшись на следующей процедуре тестирования, приведенной в пошаговом порядке ниже:

  • Начните процедуру тестирования, подключив лампу мощностью 100 Вт к выходному разъему инвертора.
  • Вставьте предохранитель на 15 А / 12 В в держатель предохранителя.
  • Наконец, подключите автомобильный аккумулятор 12 В к входам аккумулятора инвертора.
  • Если все соединения выполнены правильно, лампочка 100 Вт должна немедленно загореться.
  • Держите инвертор включенным в течение часа и дайте батарее разрядиться через лампочку.
  • Затем переведите данный тумблер в режим зарядки, проверьте показания счетчика.
  • Измеритель должен указывать зарядный ток батареи.
  • Через некоторое время показания счетчика должны постепенно снижаться до нуля, подтверждая, что батарея полностью заряжена и готова к следующему циклу.

Источник: https://meanders.ru/kak-sdelat-samodelnyj-invertor.shtml

Преобразователь напряжения для питания автомобильного усилителя

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

Эта статья содержит описание схемы простейшего импульсного повышающего преобразователя для авто усилителей (например на TDA7294 или любой другой микросхеме с двухполярным питанием), без лишних расчетов или теорий только необходимый минимум.

Это действительно самый простой способ на сегодня запустить усилитель достаточно высокой мощности в автомобиле, с бортовым питанием 12 В.

Представленный инвертор может выдавать постоянную мощность около 100 Вт, а при небольшой доработке схемы ещё больше.

Схема и описание преобразователя

Схема была разделена на несколько частей для облегчения описания и понимания сути работы деталей.

Зеленая часть представляет собой генератор, использующий популярную микросхему TL494. Чтобы сделать структуру максимально простой, использовалась только часть м/с, а именно только генератор.

Частота его работы определяется элементами R4 и C4. Для текущих значений (10 кОм и 1 нФ) она составляет около 30 кГц.

Увеличив частоту также можно повысить эффективность, но для этого необходимо намотать трансформатор более тонкими проводами (из-за скин-эффекта).

Желтая часть — усилители тока. Они используются только для облегчения повторной загрузки затворных мощностей мосфетов, которые разгружают внутренние выходные транзисторы в TL494.

Фактически, схема в текущей конфигурации будет работать и без них, потому что внутренние транзисторы TL494 в принципе могут управлять одним затвором без особых проблем, но в случае падения напряжения в источнике питания инвертор может работать нестабильно. Вот почему рекомендуется установить их.

В этой роли практически любой транзистор может быть использован для создания комплементарной пары. Схема также хорошо работает например с парой BC547 / BC557 и т.п.

Оранжевая часть — это ключевые выходные элементы. Мосфет включается при получении импульса от предыдущего каскада. Преобразователь включает мосфеты попеременно с так называемым мертвым временем (когда оба выключены).

Особое внимание следует уделить C8 (10 нФ) и R12 (4,7 Ом), потому что от них зависит безопасность транзисторов. Они используются для подавления перенапряжений, возникающих в индуктивности во время переходных процессов.

Используйте конденсатор 10 нФ на минимальное напряжение 250 В и резистор 3,3 … 4,7 Ома с минимальной мощностью 0,5 Вт.

Для преобразователя могут быть выбраны разные типы мосфетов, в значительной степени от них зависит, какой мощности и эффективности удастся достичь. Важно выбирать с низким сопротивлением и большим рабочим током. Тут использовались IRF3205, но одинаково хорошо заработают IRFZ44n, BUZ11 или IRFP064n для немного большей мощности.

Красная часть — трансформатор с выпрямителем. Про трансформатор и его перемотатку будет чуть ниже. Сейчас остановимся на схеме выпрямления и фильтрации.

Это классический симметричный источник питания, в котором используются ультрабыстрые выпрямительные диоды или диоды Шоттки. В данном случае использовался диод MBR10100CT. Ещё нужен выходной дроссель и конденсаторы фильтра.

Для одной микросхемы TDA7294 просто используйте 2200 мкФ + 100 нФ на каждое плечо. Ставьте нормальный электролитический конденсатор, нет необходимости использовать конденсаторы с низким ЭПР.

Предохранители инвертора

Схему контроля выходного тока будет лучше заменить на так называемый электронный предохранитель, который в случае короткого замыкания будет отключать преобразователи (потребуется перезапуск).

Схема управления током в инверторе с питанием, сделанным для конкретной системы (в данном случае стерео TDA7294 для громкоговорителя 8 Ом), может отключить преобразователь только во время басов, когда усилитель потребляет больше энергии.

Модуль управления имеет предохранитель в виде резистора R11. Используем стандартный 4.7R 0.25W резистор — в случае короткого замыкания в TL494 или усилителях тока, резистор немедленно перегорает. Силовая часть защищена предохранителем на 10 А. В вышеуказанной схеме короткое замыкание на выходе вызывает его немедленное сгорание.

Сборка преобразователя питания

Можно вытравить полноценную печатную плату, а можно использовать универсальную макетку. Важно, чтобы пути тока были максимально короткими и толстыми.

Полезное:  Корпус для цифрового тестера радиоэлементов

Сначала собираем зеленую, желтую и оранжевую части.

При этом схема питается через маленькую лампочку (например, 10 Вт) или установите ограничение тока 200 мА на блоке питания. Подключите один щуп осциллографа к источнику питания плюс, а другой — к усилителям УТ.

Должны увидеть прямоугольную осциллограмму с амплитудой около напряжения питания. Форма волны должна быть очень похожей на фото.

Если сигнал не отображается, проверьте правильность сборки и работоспособность зеленой и желтой секций ИБП.

Затем подключаем осциллограф параллельно мосфетам и наблюдаем форму сигнала там. Это должен быть прямоугольник с амплитудой, аналогичной напряжению питания. Если он не просматривается, это означает, что установили поврежденный mosfet (или неправильно впаяли его).

Если все в порядке, можем начать наматывать трансформатор.

Намотка трансформатора

Трансформатор — самый важный элемент и самый сложный. Во-первых, нужно достать ферритовый сердечник. Можно добыть его из блока питания ATX или другого импульсного преобразователя. Крайне важно, чтобы это был сердечник без зазора, иначе инерционный ток преобразователя будет выше, а КПД будет значительно ниже.

В худшем случае может вообще не работать. Чтобы разобрать такой трансформатор, нагрейте его в кипящей воде, потому что тогда смола размягчится. Затем, используя тряпку, разломите горячий трансформатор. Важно не повредить сердечник. Затем снимаем заводские обмотки и наматываем новые в соответствии с инструкциями далее.

Начнем с первичной обмотки. В ней две обмотки должны быть намотаны по 3 витка одновременно, где начало второй является концом первой. Обе обмотки намотаны в одном и том же направлении.

Из-за того что инвертор работает на высокой частоте, возникает скин-эффект. Поэтому не стоит намотать трансформатор одним толстым проводом, как в случае классических трансформаторов.

Для данного инвертора намотаем 4 провода по 0,3 мм. Обмотка должна выглядеть примерно так:

Теперь изолируйте первичку от вторички. Например слоями скотча. Пришло время намотать вторичную обмотку. Намотайте две обмотки по 7 витков. Трансформатор готов.

Вместо основного предохранителя вставляем лампу значительной мощности (предпочтительно 50 Вт, чтобы при малом токе она не вызывала значительного падения напряжения). Измеряем ток, потребляемый преобразователем, должно составлять 100-250 мА. Форма сигнала на осциллографе должна быть прямоугольной с требуемой амплитудой.

Инвертор практически закончен. Осталось смонтировать схему выпрямителя со сверхбыстрыми диодами или диодами Шоттки. Далее устанавливаем дроссель и фильтрующие конденсаторы.

Выходной дроссель в этом инверторе будет необходим. С натяжкой он может работать и без него, но его эффективность станет меньше и может быть слышен писк под нагрузкой. Дроссель наматывается на порошковое кольцо. Вы можете также выпаять его от источника питания ATX. Обмотка двойная по 17 витков (значение выбрано методом проб и ошибок).

Выходное напряжение инвертора должно быть примерно +/- 36 В. Это оптимальное значение для микросхем TDA7294.

Инвертор должен быть нагружен для испытаний электронной нагрузкой или мощным резистором с сопротивлением 50 Ом. Резистор будет выдавать около 100 Вт мощности в виде тепла.

Выходное напряжение преобразователя под этой нагрузкой не должно падать ниже 32 В. Наиболее теплым элементом должны быть выпрямительные диоды. Трансформатор должен слегка нагреваться, как и мосфеты.

Тест 100 Вт должен занять 10 минут.

Нужен ли стабилизатор напряжения

Стабилизация выходного напряжения на БП усилителя звука — плохая идея. Усилитель имеет очень нелинейное энергопотребление, кроме того, когда проходит бас, он может потреблять много энергии (в импульсе). Обратная связь для управления выходным напряжением может мешать реакции на повышенное энергопотребление.

Для тестирования блок питался от адаптера 12 В 60 A. Кроме того, предохранители желательно установить на линиях +36 В и -36 В. Плата имеет размеры, подходящие для установки в корпуса автомобильного радио, и все элементы можно легко охладить одним вентилятором при необходимости.

64,83

НАЖМИТЕ ТУТ И ОТКРОЙТЕ

Источник: https://2shemi.ru/preobrazovatel-napryazheniya-dlya-pitaniya-avtomobilnogo-usilitelya/

Домашний усилитель – инверторы

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

   Продолжаем наш проект Black Andel-2. Сборку деталей печатных плат к нашему домашнему усилителю мы начнём с источника питания, точнее двух источников, так как требуется два БП. Конечно мы используем не силовые трансформаторы на железе, а импульсные блоки питания.

   Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал.

Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494.

   Трансформатор был намотан ан двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое. 

   Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера.    Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки. 

   В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой – скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм. 

   Диодный выпрямитель собран из 4-х диодов серии КД213А. Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер – то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение. 

   Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар, т.е общая емкость фильтров в плече 5000 мкФ. 

   Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.

Запуск первого инвертора бп

   Перед запуском инвертора тщательно проверяем правильность монтажа. Маломощные транзисторы BC556/557 можно заменить на отечественный аналог КТ3107, ВС546 на КТ3102 или любые другие с близкими параметрами.

   Полевые ключи в ходе работы без выходной нагрузки не должны нагреваться, а с нагрузкой нагрев плеч должен быть равномерным. Последний этап – теплоотвод. Полевые транзисторы в моем случае укреплены на теплоотвод от компьютерного блока питания, через слюдяные прокладки и изолирующие шайбы. 

   В схеме реализован ремоут контроль (REM), т.е. основной, силовой плюс и минус всегда подключены к усилителю, а для того, чтобы схема завелась, подается плюс на точку REM, открывается транзистор BC546 и подается питание на генератор и начинается рабочий цикл инвертора. Плюс на ремоут можно подавать от автомагнитолы, или же можно приспособить в машине маленький тумблер, которым можно включить и выключить усилитель. 

   Если возникли проблемы…

   Проблема. Бывает так, что при первом же включении выходят из строя полевики.

   Причина и устранение. Неправильно сфазирована первичная обмотка или бракованные транзисторы. Если уверены в правильности монтажа и в исправности всех компонентов, то скорее всего первичная обмотка трансформатора неправильно сфазирована.

Для этого отключаем вторичную цепь, то есть нагрузку, которая подключена ко вторичной обмотке и снова запускаем трансформатор (часто, проблемы могут возникнуть на вторичных цепях), если все также, то проверяем транзисторы на исправность, они скорее всего будут “убитыми”, заменяем и фазируем трансформатор правильно. 

   Проблема. При включении одна из пар транзисторов перегревается, вторая пара холодная.

   Причина и устранение. Вначале проверяем наличие прямоугольных импульсов на 9 и 10 выводах микросхемы, если все ок, то проверяем посключение диодов и маломощных транзисторов, такая проблема возникает по двум причинам – неправильное подключение маломощных транзисторов драйвера или же неравноценные плечи первичной обмотки.

   Схема и печатная плата второго инвертора полностью схожа с первым. Выходное напряжение для питания каналов ОМ составляет 2х55 Вольт (+/-55В). Вторичная обмотка на сей раз намотана 6-ю жилами провода 0,8 мм и состоит из 2х28 Витков, мотается по той же технологии, что и в случае первого инвертора.

   Обратите внимание на то, чтобы первичные и вторичные обмотки были обязательно намотаны В ОДИНАКОВОМ НАПРАВЛЕНИИ!
   Другая вторичка предназначена для запитки блока усилителей на микросхемах LM1875. Обмотка состоит из 2х8 Витков, намотана 4-мя жилами провода 0,8 мм. 

   После сборки инвертора тщательно проверяем монтаж на ошибки, если таковых нет, то беремся за мультиметр и проверяем вторичные цепи на замыкания.

Первое включение

   Первый запуск инвертора стоит сделать от лабораторного БП с защитой от КЗ, при этом в момент запуска защита может ошибочно сработать, если блок маломощный, в моем случае использовался переделанный БП с током 3,5 А.

Холостой ток инвертора 170-280 мА, зависит от правильного расчета трансформатора, рабочей частоты генератора и типа полевых ключей, немалую роль играет резистор снаббера, в моем случае с ним пришлось чуток поиграться, чтобы снизить потребление схемы. 

   Во время холостого хода, на ключах не должно наблюдаться тепловыделения, если оно есть, то имеется проблема с монтажом или нерабочий компонент. Перед запуском промойте плату от флюсов, для этого можно использовать ацетон или растворитель. А теперь приступаем собственно к самому блоку УМЗЧ… С уважением – АКА КАСЬЯН.   Форум по созданию домашнего УМЗЧ

   Обсудить статью Домашний усилитель – инверторы

Источник: https://radioskot.ru/publ/unch/domashnij_usilitel_invertory/6-1-0-680

Простейший преобразователь и инвертор 12В – 220В своими руками

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

Можно вспомнить много случаев, когда пригодился бы преобразователь из 12 вольт постоянного тока в 220 вольт переменного – например, приехав на дачу на автомобиле, можно вечером включить освещение или запитать от аккумулятора насос для полива. Также такой инвертор – неотъемлемая часть ветряных генераторов.

Купить готовое устройство не составит проблем – в автомагазинах можно найти автомобильные инверторы (импульсные преобразователи напряжения) различной мощности и цены.

Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.

Простой импульсный преобразователь

Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера.

Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц.

Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.

Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами.

Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя.

Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.

Читайте так же:  Обзор источников бесперебойного питания для дома и дачи

Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.

Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.

Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей.

Схема преобразователя с выходом переменного тока

Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.

Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.

Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.

Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник. Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.

Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.

Простой инвертор на транзисторах

Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.

Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.

Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами. Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Читайте так же:  Сделаем зарядное устройство из блока питания компьютера

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече.

Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов.

В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

На примере последней схемы это будет выглядеть так:

Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас, если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:

Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР: Возьмем реле с напряжением срабатывания (Uр) 9 вольт и сопротивлением обмотки (Rо) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (Umin) , последовательно с обмоткой нужно включить резистор с сопротивлением Rн, рассчитываемым из условия равенства Uр/Rо=(Umin—Uр)/Rн. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.
Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:

Регулировка порога срабатывания осуществляется подбором резистора R3.

Предлагаем посмотреть видео по теме

Обнаружение неисправностей инвертора

Перечисленные простые схемы имеют две наиболее распространенных неисправности – либо на выходе трансформатора отсутствует напряжение, либо оно слишком мало.

  • Первый случай – это либо одновременный отказ обоих плеч преобразователя, что маловероятно, либо отказ ШИМ-генератора. Для проверки воспользуйтесь светодиодным пробником, какой можно приобрести в любом магазине радиодеталей. Если ШИМ работает, на затворах транзисторов Вы увидите наличие сигнала по быстрым пульсациям свечения диода (особенно хорошо это заметно в низкочастотных схемах). При наличии управляющего сигнала проверьте, нет ли обрывов в соединениях трансформатора и целостность его обмотки.
  • Большое падение напряжения – это явный признак отказа одного из силовых плеч инвертора. Найти отказавший транзистор можно простейшим образом – его радиатор останется холодным. Замена ключа вернет инвертору работоспособность.

Заключение

Как можно понять из материалов статьи, сделать своими руками несложный преобразователь 12 – 220 вольт не так и трудно.

И, хотя такие устройства и не смогут сравниться по набору дополнительных функций или привлекательности внешнего вида с заводскими, они обойдутся хозяину значительно дешевле.

При соблюдении правил эксплуатации самодельный преобразователь будет работать очень долго, ведь в таком простом устройстве практически нечему ломаться.

Напоследок предлагаем посмотреть еще один видеоматериал, про изготовление устройства из БП компьютера

Для экономии времени и сил, можно приобрести готовый недорогой преобразователь. В зависимости от целей использования, цены начинаются от 899 р.

Инвертор AIRLINE API-75-00

Максимальная выход. мощность 150 Вт

Напряжение: 12 В/220 В

Предназначен для питания мелких устройств с потребляемой мощностью до 75Вт, например: небольших видеокамер, MP3 -плееров, осветительных приборов и т.д.

899 р.

Инвертор AVS IN-200W

Максимальная выход. мощность 400 вт.

Напряжение: 12 В/220 В

Для MP3 плееров, ноутбуков, телефонов

1419 р.

PITATEL KV-M300U.24

Максимальная выход. мощность: 600 Вт

Напряжение:24/220-240 В

Для зарядки и использования любого электронного устройства: мобильного телефона, ноутбука, фотоаппарата, планшета, MP3-плеера и т.п.

2259 р.

AIRLINE API-400-03

Максимальная выход. мощность: 400 Вт

Напряжение 12/220 В

Для ноутбуков, авто телевизоров, dvd плееров, М3-плееров и т.д.

3069 р.

AVS 12/220V IN-1500W

Максимальная выход. мощность: 3000 Вт

Напряжение: 220 В

бытовой аудио-видео техники, компьютера, ноутбука, небольшого авто холодильника, авто пылесоса (до 100 Вт), электроинструментов с низким пусковым током (например дрель)  до 900 Вт.

4949 р.

Источник: https://generatorexperts.ru/elektrogeneratory/preobrazovatel-12v-220v.html

Инверторные системы электроснабжения для коттеджа

ДОМАШНИЙ УСИЛИТЕЛЬ - ИНВЕРТОРЫ

Загородные дома, коттеджи и дачи нередко испытывают проблемы с электроснабжением. Особенно это касается тех объектов, которые расположены на большом расстоянии от центральных линий электропередачи и возможность подключения к сети полностью отсутствует.

Во многих случаях данная проблема успешно решается за счет автономного электроснабжения с применением альтернативных источников электроэнергии.

К одним из наиболее эффективных вариантов относятся инверторные системы электроснабжения для коттеджа, способные обеспечить электричеством бытовую технику и оборудование в полном объеме.

Применение инверторов в автономном электроснабжении

При использовании инверторных систем в стандартном варианте, зарядка аккумуляторных батарей производится от домашней электрической сети, когда все оборудование работает в штатном режиме.

Однако такая схема не будет работать, если центральное электроснабжение полностью отсутствует.

В этих случаях инверторные установки могут использоваться совместно с альтернативными источниками энергии – генераторами, солнечными батареями, ветровыми установками и т.д.

При создании автономных систем чаще всего используются электрогенераторы. Они обеспечивают энергией весь объект при отсутствии электричества и одновременно заряжают аккумуляторы, входящие в инверторную систему. После того как зарядка батарей достигнет 100%, генератор автоматически выключается.

Однако бесперебойное электроснабжение с помощью генераторной установки обойдется значительно дороже, чем от обычного инвертора. Процесс эксплуатации сопровождается постоянными материальными затратами.

Например, в холодное время года генератор нужно обеспечить теплым помещением, постоянно приобретать топливо. Для защиты от шума потребуется специальная защита, а также система вывода отработанных газов.

Техническое обслуживание генераторной установки тоже связано с материальными затратами.

Существуют и другие, более дешевые резервные источники электроснабжения, такие как солнечные батареи. Они имеют целый ряд преимуществ по сравнению с генераторами и единственный недостаток – слишком высокую цену. Преобразователи солнечной энергии также работают с инверторными системами. В дневное время они заряжают аккумуляторные батареи, а ночью отдают накопленную энергию потребителям.

Одной из составляющих системы бесперебойного питания служат стабилизаторы напряжения. При всех своих достоинствах инверторы не могут выполнять функции этих устройств.

Именно стабилизатор гарантирует продолжительный срок эксплуатации бытовых приборов и оборудования, обеспечивая им работу от стабильного напряжения 220В.

При работе электросварки у соседей, свет в своем доме не будет моргать, лампочки останутся целыми, телевизоры, компьютеры и другая техника будут работать устойчиво и надежно.

Таким образом, использование инверторных систем в коттедже по стандартной схеме эксплуатации является наиболее оптимальным вариантом домашнего электроснабжения.

Они имеют возможность наращивать мощность до нужного уровня и абсолютно безопасны в работе. В аварийных ситуациях эти устройства могут обеспечивать питание отдельных приборов.

Использование инверторов считается невыгодным лишь при наличии в доме электрической системы отопления.

Конструкции инверторов для автономного электроснабжения

Источник: https://electric-220.ru/news/invertornye_sistemy_ehlektrosnabzhenija_dlja_kottedzha/2017-05-18-1268

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.