САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Содержание

Светодиодный прожектор своими руками

САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Пока светодиодная продукция не вошла в нашу жизнь окончательно и производство полноценно не стало на рельсы, цена на светотехнику LED продолжит кусаться. Но зачем ждать или, того хуже, переплачивать, если можно собрать своими руками прожектор нужной мощности по нашей инструкции.

Электротехнические особенности работы со светодиодами

Если вы намерены использовать светодиодную технику, вам не помешает узнать о некоторых тонкостях работы с ней, которые отчасти можно назвать недостатками. С одной стороны, светодиоды — компактные, экономные и долговечные источники света, а с другой?

Твердотельные полупроводниковые элементы критически чувствительны к высоким температурам в активной зоне. Явление, называемое деградацией, заключается в потере полупроводником легирующих добавок, что выражается в снижении светового потока или окончательном выходе из строя.

а) конструкция обычного светодиода: 1 — анод; 2 — катод; 3 — проводник; 4 — кристалл; 5 — пластиковая линза б) конструкция мощного светодиода: 1 — корпус; 2 — проводник; 3 — теплоотвод; 4 — кристалл; 5 — линза; 6 — катод

При температуре от 60 °С светодиод деградирует очень быстро и заявленные производителем 50 тысяч часов в итоге оборачиваются в 3–5 тысяч.

И чем мощнее одиночный светодиод, тем выше вероятность его быстрого старения из-за перегрева.

Поэтому при разработке осветительных приборов во главу угла ставится качественная система отвода тепла, а также разбиение излучателя на несколько точек и их правильная компоновка.

Другая особенность светодиодов — они могут пропускать только ограниченное число электронов в единицу времени. Сеть, питающая светодиод, должна быть стабилизирована по току, иначе возникает сильный перегрев и связанные с ним негативные последствия.

Ток в цепи питания регулируется приложенным напряжением и ограничивается резистором на каждом из светодиодов.

При разработке схемы соединения нужен тщательный расчёт: завысите напряжение и светодиоды быстро выйдут из строя, а сделаете слишком низким — будут светить вполсилы.

Наиболее простые прожекторы имеют только один светоизлучающий элемент, в приборах же высокой мощности рекомендуется распределять нагрузку для более эффективного отвода тепла. В таких случаях соединение может быть последовательным, параллельным или смешанным.

Первое не совсем безопасно: если один из светодиодов перегорит, он может либо разорвать цепь, либо шунтировать её.

При параллельном (и особенно смешанном) соединении велик риск, что после выключения из цепи одного потребителя ток в питающей сети возрастёт до неприемлемых величин.

Точечные источники и матрицы: выбор, закупка

Есть три типа светодиодов, которые разумно использовать в изготовлении прожекторов. Учтите, что при сборке светового прибора из нескольких светодиодов, они должны быть идентичны как по типу, так и по вольт-амперным характеристикам. Также рекомендуется приобрести до десятка запасных диодов в качестве ремкомплекта и на случай повреждения при монтаже.

Светодиоды в виде пластиковой капсулы со штыревыми выводами пригодны для изготовления небольших прожекторов и фонариков. Это наиболее дешёвый тип продукции, а конечное изделие в итоге будет относительно легко отремонтировать.

Второй тип — сверхяркие белые светодиоды на металлической подложке. Их стоит использовать в высокомощных осветительных приборах, отводить тепло от них достаточно просто.

Ещё одной разновидностью LED служат светодиодные матрицы высокой мощности. Не рекомендуется самостоятельно изготавливать прожекторы с мощностью матриц 20 Вт и выше: эффективно отвести тепло простыми мерами не удастся.

Детали корпуса и рефлектора

Есть ряд решений для корпуса самодельного прожектора. Если требуется высокая степень пыле-влагозащиты для уличного фонаря, то подойдёт автомобильная фара. Ободок цоколя лампы нужно будет вырезать и закрепить поверх панели со светодиодной матрицей. Недостаток метода — ограниченная мощность прожектора при том, что матрица в нём поместится только одна.

Если вы размещаете несколько светодиодов или матриц на одной печатной плате или монтажной панели, корпус можно изготовить из жести или тонколистовой стали. На заготовке разметьте развёртку усечённой пирамиды: квадрат в центре и одинаковые равнобедренные трапеции по сторонам.

Не забудьте оставить по «язычку» на одной из боковых сторон каждой трапеции для стыкования лепестков между собой. Также в меньшем основании трапеции следует оставить прямоугольную полоску около 15–20 мм, а в центре квадрата вырезать ещё один со стороной на 20–25 мм меньше.

Когда выкройка будет готова, отшлифуйте края, согните корпус и соедините швы заклёпками. Внутреннюю поверхность прогрунтуйте, вскройте белой аэрозольной краской без глянца и оставьте сохнуть на 2–3 суток.

С передней стороны корпуса заведите по диагонали квадратный отрезок стекла подходящих размеров и прислоните его к загнутым полочкам изнутри.

По контуру стекла обильно пройдитесь белым силиконом, им же промажьте швы корпуса.

Крепление монтажной панели или платы выполните на восьми болтах по 4 мм, предварительно просверлив отверстия по краям каждой полочки на узкой стороне корпуса. Чтобы пластина прилегала плотно, используйте уплотнитель для дверей из вспененного ПВХ. Обтянуть болты будет непросто, их головки недоступны, поэтому используйте пару законтренных гаек на конце.

Монтаж радиоэлементов

Если вы выбрали светодиоды со штыревыми выводами, для их монтажа потребуется пластина текстолита. Продумайте схему размещения и нарисуйте перманентным маркером токоведущие дорожки.

Аноды всех светодиодов (длинные хвосты) допустимо собрать на одну шину «массы».

Катоды также собираются в одну точку, но в цепь питания каждого светодиода следует последовательно включить токоограничивающий резистор.

Его расчёт прост: из напряжения питающей сети вычитаем напряжение светодиода и делим на предельно допустимый ток. Чтобы перестраховаться на случай колебаний напряжения источника, допустимый ток светодиода можно заведомо занизить до 90–95% паспортного значения.

Пример схемы светодиодной матрицы из диодов с рабочим напряжением 3 вольта и рабочим током 20 мА

Ориентировочное напряжение питания для одного светодиода составляет 4 В.

Если источник выдаёт больше, целесообразно включать диоды по смешанной схеме, где параллельно соединены гирлянды, в каждой из которых по одному светодиоду на каждые 4–5 В напряжения.

Допустимый ток для такой последовательной сборки определяется как сумма допустимых токов каждого, а прямое напряжение остаётся тем же, при условии что у каждого светодиода этот параметр одинаков.

Разместив элементы и нарисовав дорожки, протравите пластину текстолита в растворе лимонной кислоты (30–50 г), 3-х процентной перекиси водорода (100 мл) и поваренной соли (2 чайные ложки), периодически проверяя степень растворения незащищённых участков. Просверлите отверстия под штыревые выводы сверлом на 1,5–2 мм, просверлите восемь отверстий для крепления платы к корпусу, а затем тщательно пролудите токоведущие части припоем с канифолью.
Для светодиодной матрицы можно также использовать монтажную плату

Если вы собираете диоды или матрицы на охлаждающей подложке, их монтаж выполняется навесным способом. В качестве монтажной панели следует выбрать алюминиевый радиатор типа «расчёска». Каждый светодиод крепится посредством двух или трёх отверстий, разметьте их все сразу и просверлите с тыльной стороны радиатора сверлом на 2,5 мм.

Для крепления используйте короткие саморезы 3,5х11 мм для металлических профилей, но без бура на конце. Перед закреплением диода нанесите на подложку небольшое количество термопасты КПТ-8.

Катод (-) и анод (+) у светодиодов с подложкой маркированы, схема подключения и расчёт защитных резисторов одинаковы для всех типов. Соединять элементы между собой следует посредством отрезка телефонного провода. Чтобы не выполнять лишнюю работу, аноды можно сразу припаивать короткими перемычками к корпусу алюминиевого радиатора.

Вопрос об источнике питания

После сборки светодиодов у вас останется два вывода, на которые было бы неплохо подать напряжение, но откуда его взять? Бытовые источники питания здесь мало применимы, для питания светодиодов нужен LED-драйвер, выдающий пульсирующий постоянный ток стабильного значения.

Для большинства изделий подойдёт драйвер систем интерьерного освещения или для LED-лент. Лучше приобрести источник питания заранее, чтобы по нему рассчитать количество и схему соединения диодов согласно напряжению на выходе и общему току стабилизации.

Для небольших поделок можно использовать блоки питания общебытового назначения с выходным пульсирующим током в 0,5–1,5 А и напряжением на 3–5 В выше прямого напряжения диодов. Стабилизировать источник питания можно микросхемой LM317, для более мощных прожекторов используйте LM350 и LM338, соответственно, увеличивая мощность источника.

Стабилизатор тока для светодиодов

Ограничение тока микросхемой можно регулировать, меняя сопротивление резистора. Его номинал определяется как 1,25/I, где I — ток светодиода или сборки.

Источник: https://zen.yandex.ru/media/id/5aa78316c89010028f15d270/5bf3a53f86974700a9c5e7f3

Светодиодные матрицы

САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Светодиодные матрицы представляют собой технологическое объединение на одной подложке нескольких светоизлучающих полупроводниковых кристаллов, с общей заливкой смесью люминофора и силикона.

Появление LED-матриц связано с разработкой технологии COB (Chip-on-Board), что дословно переводится как «чип на плате». Эта технология пришла на смену SMD светодиодам, отличается высокой степенью автоматизации производства и привела к существенному снижению цен на светодиодные светильники и прожектора.

Виды и области применения

Сохраняя единый принцип размещения светодиодных кристаллов на теплопроводящей подложке, светодиодные матрицы существенно отличаются по количеству кристаллов на одном основании и способам их соединения между собой.

Количество кристаллов на одной подложке определяет итоговую мощность матрицы, которая может достигать сотен ватт на одно изделие. Мощные матричные источники света хорошо зарекомендовали себя в прожекторах и светильниках для уличного освещения.

Способ соединения кристаллов между собой определяет возможности управления свечением отдельных кристаллов и параметры блока питания для матрицы.

Последовательно-параллельная структура внутренних соединений дает возможность снизить ток и увеличить величину питающего напряжения, что находит свое отражение в характеристиках матричных изделий.

Еще одной особенностью внутренних соединений кристаллов между собой с внешними выводами выступает возможность использования светодиодных матричных структур в информационных табло и в графических или символьных экранах. Такие LED-матрицы находят свое применение в контрольно-измерительной аппаратуре и всевозможных инсталляциях рекламного характера.

В устаревших моделях, для информационных табло, графических или символьных экранов, светодиодные матрицы конструировались на основе DIP или SMD-светодиодов.

Принципиальная схема

Как отмечалось выше, последовательно-параллельная схема соединения светодиодных кристаллов между собой определяет требования к источнику питания матрицы. Чем выше напряжения питания, тем больше светодиодов объединены в последовательные цепи.

Такая особенность снижает требования к выходным токам драйверов, но в случае выхода из строя одного кристалла в последовательной цепи, перестает излучать свет вся цепочка.

Ток перераспределяется на рабочие LED-чипы, тем самым ускоряя их деградацию и серьезно уменьшая срок службы светодиодной матрицы в целом.

Для решения проблемы, некоторые производители соединяют все светодиодные чипы внутри матрицы одновременно последовательно и параллельно. Такая особенность значительно уменьшает возможность выхода из строя LED-матрицы вследствие перегорания одного чипа.

Параллельное соединение светодиодов между собой в пределах одной матричной структуры требует больших выходных токов драйвера, но общая излучающая способность практически не страдает от выхода из строя одного или двух кристаллов.

Матрицы для светодиодных табло имеют в своем составе сложную систему внутренней коммутации, что определяется требованиями управления каждым светодиодом в отдельности. Для управления такими LED-матрицами созданы специальные интегральные процессоры и микросхемы.

Подключение

В схемах подключения светодиодных матриц определяющими факторами их надежности выступают два ключевых момента — достаточная площадь радиатора для отвода тепла и стабилизация питающих токов. Оба этих фактора напрямую связаны с усиленной деградацией полупроводниковых кристаллов при превышении их температур выше максимально допустимой.

К повышению температуры кристалла приводит, как недостаточная площадь радиатора охлаждения, так и слишком высокий проходящий ток.

Рабочие величины постоянного тока указываются в параметрах светодиодных матриц, а для ориентировочного выбора площади радиатора можно использовать цифру 20-25 см² на 1 Вт мощности матрицы.

При это следует учитывать, что такая площадь необходима при температурах окружающего воздуха до 35 °С.

При более высоких температурах рабочую площадь радиатора следует увеличить либо дополнить активным охлаждением.

При выборе светодиодных матриц со встроенным драйвером и питанием от сети 220 В необходимо учесть, что такие источники света не подходят для освещения мест постоянного пребывания человека.

Отсутствие в схеме драйвера с питанием от сети 220 вольт электролитических конденсаторов большой емкости определяет высокий коэффициент пульсации излучаемого света, вредное влияние которого на здоровье человека доказано множеством научных исследований.

Заключение

Совершенствование параметров светоизлучающих светодиодных кристаллов ведет к появлению все более мощных матричных структур, выходная мощность которых уже достигла 300 и более Вт.

Такая тенденция, в сочетании с повышением удельного светового потока на 1 Вт подводимой мощности, определяет дальнейшее развитие светодиодных матриц и их опережающее развитие на рынке осветительной техники.

Источник: https://ledjournal.info/spravochnik/svetodiodnaya-matritca.html

Светодиодный прожектор своими руками: необходимые материалы и порядок сборки

САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Устаревшие галогенные прожекторы в последнее время повсеместно заменяются системами освещения на светодиодах, которые имеют более высокую эффективность, но стоимость таких устройств на порядок выше.

Мастера знают, как собрать светодиодный прожектор своими руками. Для этого придется купить необходимые детали, подготовить инструменты и освоить простые навыки.

Особенности конструкции прожектора

Диодные прожекторы или LED-устройства весьма экономичны по расходу электроэнергии, требуют минимум обслуживания, их светящие элементы работают до 50 – 90 тыс. часов. Приборы приспособлены для эксплуатации на улице, не портятся от погодных условий, грязи, пыли. Качество излучаемого света очень высокое.

Можно ли сделать прожектор на светодиодах своими руками? Конструкция такого оборудования довольно проста, потому можно попробовать собрать его в домашних условиях. Серьезных поломок у самодельного прожектора обычно не возникает, а все, что сломается, можно отремонтировать самостоятельно.

Устройство будет состоять из таких частей:

  • корпус;
  • фиксирующие скобы;
  • светодиодная матрица;
  • драйвер.

Матрица прибора состоит из диодов, прикрепленных к плате и защищенных особыми полимерами от повреждения.

Электротехническая специфика прожектора

Перед началом сборки надо уточнить особенности электроники прожектора на основе светодиодов. Это поможет выполнить работу правильно и исключить воздействие высоких температур на активную зону прибора.

Дело в том, что твердотельные полупроводники высокочувствительны к таким перепадам, что вызывает их деградацию и потерю легирующих добавок.

В конечном счете критическое повышение температуры (от +60 градусов) вызывает уменьшение интенсивности освещения или полную поломку.

Конструкция простого светодиода предусматривает наличие таких составляющих:

  • анод;
  • катод;
  • линза и кристалл;
  • проводник.

Мощный светодиод включает проводник, теплоотвод, кристалл, линзу, катод. Надо помнить, что мощность диода повышает риск его преждевременного износа из-за перегрева.

При создании самоделки важно обеспечить хорошую систему отведения тепла, правильно разбить излучатель на несколько частей и верно их установить (последовательно или параллельно).

В простых прожекторах можно делать всего 1 излучающий элемент.

Не менее важно стабилизировать сеть по току, иначе перегрева не избежать. Ток должен регулироваться приложенным напряжением и ограничиваться резисторами на диодах. При создании схемы ЛЕД-устройства делается строгий расчет: при превышении напряжения светодиоды скоро испортятся, при недоборе — будут слабо светить.

Необходимые материалы и детали

Чтобы собрать качественное устройство, надо заранее купить все нужные составляющие. Часть можно найти в гараже у автолюбителей, иные — раздобыть у знакомых.

Список:

  1. Светодиодная матрица с драйвером. Такие есть на старых фонарных столбах, которые уже вышли из строя — их мощности будет вполне достаточно, но придется заменить перегоревшие лампы. Еще лучше купить новый элемент в специализированном магазине электроники.
  2. Корпус. Его готовят своими руками из разных подручных материалов — металла, фанеры. Можно взять старый галогеновый фонарь или купить новый.
  3. Соединительные провода. Потребуются для подсоединения готового устройства к сети питания.
  4. Фольга. Нужна для создания отражателя. Купить ее можно в продуктовом магазине, главное, чтобы плотность была высокой.
  5. Надежный клей и герметик либо средство 2 в 1.
  6. Радиатор охлаждения. Будет нужен для изготовления мощного прожектора — на 100 Ватт и более.

Для работы потребуются такие инструменты:

  • болгарка;
  • аппарат для сварки;
  • дрель со сверлом;
  • паяльник с припоем.

Источники света

Светодиоды — главный элемент осветительного прибора, без них не будет выполняться основная функция устройства. Их качеству стоит уделить самое пристальное внимание при покупке. Все светодиоды в рамках одного прибора обязаны быть строго одинаковыми по типу, техническим параметрам (вольт-амперные характеристики).

Тип светодиодов

Рекомендуется сразу купить достаточное количество запасных диодов (до 10), которые заменят поврежденные при монтаже изделия. Неудачное монтирование — не редкость, и покупка с запасом избавит от неудобств.

Существует три основных типа светодиодов:

  1. В форме пластиковой капсулы со штыревыми выводами. Годятся для создания прожекторов малой мощности, для фонарей, стоят дешево. Сила света от таких диодов невелика. У профессионалов есть специальные приборы для определения мощности светодиодов по размеру самих кристаллов, в противном случае придется довериться продавцу. Работать с такими светодиодами легко, ремонтировать — проще простого.
  2. Сверхяркие белые светодиоды на металлической подложке. Их применяют для создания высокомощного осветительного оборудования, система отведения тепла эффективная и простая. Стоимость таких изделий невысока.
  3. Светодиодные LED-матрицы. Это высокомощные светодиоды, работать с которыми рекомендуется только профессионалам. Обычным способом отводить тепло от них не получится, следовательно, прожектор быстро придет в негодность.

Материал корпуса

Корпуса для прожекторов можно купить в интернет-магазине или в специализированном отделе радиотехники, электроники. Стоимость их довольно низкая. Можно «вытряхнуть» старый галогенный светильник, взяв за основу его корпус.

Оба варианта хороши, поскольку не придется изобретать отражатель, который уже есть внутри.

Цена простенького галогенового светильника составит 150 – 200 рублей, а замена наполнения на светодиодное позволит получить мощное светотехническое оборудование.

Можно сделать корпус самостоятельно, но его эстетические свойства будут ниже. Для обеспечения высокой степени защиты от пыли, влаги стоит взять старую автомобильную фару. Для отличного отвода тепла применяют алюминиевые радиаторы — из них получаются качественные корпуса.

Чтобы разместить пару или больше светодиодов и матриц на одной плате, лучше сделать корпус из жести, тонколистовой стали. После сгибания коробки края шлифуют, швы соединяют заклепками. Сверху изделие грунтуют, наносят эмаль по металлу. Дальше работать с заготовкой можно только после полного высыхания.

Источник питания

После сбора диодов надо подумать о подаче напряжения. Бытовые источники тока не применяются, нужен специальный LED-драйвер, который подает пульсирующий стабильный ток.

LED-драйвер

Высокого напряжения (220 Вольт) светодиодам для питания не требуется, им достаточно 3,2 – 12 Вольт. Если подать к устройству большее напряжение, его можно попросту сжечь. Именно для исключения таких последствий любой прожектор должен иметь LED-драйвер. Его предназначение — стабилизация постоянного тока.

Практически для всех самодельных светодиодных прожекторов годится драйвер LED-лент или систем интерьерного освещения. Его покупают заранее в готовом виде, согласно техническим параметрам рассчитывают количество диодов и разрабатывают схему их соединения. Она будет зависеть от напряжения на выходе и тока стабилизации.

Блоки питания

Такие приборы применяются на прожекторах, которые построены на LED-матрицах.

Для малых устройств небольшой мощности можно применять блоки питания общебытового значения с выходным пульсирующим током 0,5 – 1,5 А, напряжением на несколько вольт больше, чем прямое напряжение светодиодов. Для стабилизации тока используются микросхемы LM317, а для приборов более высокой мощности — LM350, LM338.

Этапы сборки прожектора

Порядок создания готового изделия следующий:

  1. Подготовить корпус, из старых корпусов удалить все лишнее, чтобы получилась пустая коробка, заднюю часть отделать фольгой.
  2. При необходимости высверлить в корпусе дырки для вентилирования (при установке радиатора или кулера).
  3. Собрать все светодиоды вместе в одну конструкцию, закрепить их на основании (плате).
  4. Подвести к контактам провода, вывести на наружную часть корпуса.
  5. Установить готовую конструкцию внутри корпуса, закрепить клеем.
  6. Для мощного прожектора поставить радиатор вместе со светодиодной платой (приклеить).
  7. Вытащить провода наружу, закрепить герметиком (это позволит исключить попадание влаги и грязи внутрь).

Для подключения в сеть надо заранее подвести провода электропередачи в нужное место. Важно не перепутать полярность проводов, иначе диоды могут сгореть или не будут работать. Обязательно устанавливается драйвер для стабилизации напряжения. Места стыков проводов изолируются гофрой или пластиковым чехлом. Готовую конструкцию закрепляют на улице.

В результате таких действий будет готов самодельный прожектор с направленным освещением и высокой яркостью.

Минус в том, что при нестабильном напряжении надежность изделия будет ниже, поскольку скачки могут вызвать перегорание диодов.

Исправить такой недочет поможет монтирование двух резисторов с сопротивлением 1 – 2 Ом. Это позволит получить действительно качественную конструкцию не хуже тех, что реализуются в магазине.

Светодиодный прожектор своими руками: необходимые материалы и порядок сборки

Источник: https://220.guru/osveshhenie/ulichnoe/svetodiodnyj-prozhektor-svoimi-rukami.html

Часы на светодиодных матрицах: что это и как сделать своими руками

САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Преимущества светодиодов неоспоримы, сегодня они везде, в том числе и часах. Что представляют себя часы на светодиодных матрицах, о плюсах и недостатках разберем в рамках статьи. В конце статьи представлено подробное пошаговое руководство для изготовления устройства своими руками.

Что это такое

Часы на светодиодных матрицах — это электронные часы, в которых для индикации используются матрицы из множества светодиодов. Применение индикаторов другого типа — единственное их отличие.

Матрица — это набор светодиодов, собранных вместе в виде сетки с единым анодом или катодом. Как правило, разрешение таких индикаторов — количество точек по вертикали и горизонтали — 8×8.

Почему же такие часы набирают популярность, преимущества:

  1. Цена. Светодиодные матрицы дешевле семисегментных индикаторов аналогичных размеров.
  2. Яркость. Светодиоды горят ярче, чем семисегментные индикаторы, их лучше видно в местах, освещенных солнечными лучами. Многие производители также предусматривают конструктивную защиту диода от воздействия солнца.
  3. Функциональность. При помощи матрицы из светодиодов можно выводить не только цифры, но также различные буквы, знаки препинания, символы. При помощи набора LED-матриц можно выводить некоторую информацию в виде бегущей строки.

Светодиодные матрицы имеют и недостатки:

  • Увеличенная сложность управления. Из-за большого количества элементов (в стандартной матрице их 64) управлять матричными индикаторами чем семисегментными. Для этого применяются микроконтроллеры, динамическая индикация и сдвиговые регистры.
  • Угол обзора. Особенность светодиодов состоит в том, что они фокусируют свет в одном направлении. Это приводит к тому, что изображение на светодиодной матрице видно хорошо только под определенным углом.
  • Непереносимость высоких температур. Нагревание снижает эффективность светодиодов и уменьшает срок службы.
  • Перегорание отдельных светодиодов приведет к эффекту «битого пикселя» и ухудшению качества изображения.

Самодельные часы на светодиодных матрицах

Несмотря на большую популярность часов на светодиодных матрицах, в Рунете не так уж и много схем для их самостоятельного изготовления. Рассмотрим самую популярную.

Необходимые навыки для сборки устройства:

  • изготовление печатных плат;
  • пайка элементов: схема предполагает SMD-исполнение, это значит, что элементы будут устанавливаться прямо на поверхность платы;
  • прошивка микроконтроллеров: в схеме используется МК ATMega16A;
  • программирование МК: это не обязательно, поскольку для данного устройства уже имеется прошивка контроллера. Этот навык пригодится, если вы захотите изменить режим работы часов или расширить их функционал, например, добавив дополнительные элементы такие, как датчики температуры или влажности.

Из инструментов понадобятся:

  • набор для изготовления плат;
  • программатор МК;
  • паяльник.

Рассмотрим подробнее схему устройства. Главным управляющим элементом является МК ATMega16A, он обеспечивает следующие возможности прибора:

  1. Отсчет времени и календарь. Ведется даже при отключении питания.
  2. Будильник. Здесь их 9 штук, можно запрограммировать на работу по дням недели.
  3. Измерение температуры. Конструкция часов позволяет установить два датчика температуры для измерений в комнате и на улице.
  4. Режим бегущей строки. Выдает следующую информацию: день недели, месяц, год, температура.
  5. Коррекция хода часов.

Большая часть функций возложена на микроконтроллер, что позволяет максимально разгрузить схему и использовать минимальное количество элементов.

В устройстве используется лишь две микросхемы: микроконтроллер и сдвиговый регистр TPIC6B595, также можно подключить два датчика температуры DS18B20 — один уличный, и второй комнатный.

Для индикации используются три светодиодные матрицы 8×8. В качестве диода D1 лучше использовать диод Шоттки. Диод в схеме обеспечивает переход на аварийное питание, а диод Шоттки обладает наименьшим падением напряжения и высокой скоростью переключения.

Процесс изготовления:

  1. Необходимо изготовить плату. Для этого потребуется: фольгированный текстолит, лазерный принтер, утюг и 150г хлористого железа. Сначала нужно распечатать чертеж платы на глянцевой бумаге с помощью лазерного принтера. Полученную распечатку следует приложить рисунком к текстолиту так, чтобы поверхность бумаги была ровной. Горячим утюгом нужно аккуратно провести по распечатке, чтобы не смять и не сместить её. Тонер расплавится и приклеит распечатку к текстолиту. Чтобы удалить бумагу, заготовку платы помещают в теплую воду. В результате мы получим чертеж платы, напечатанный на текстолите. Весь тонер должен быть перенесен на поверхность платы, в дорожках не должно быть разрывов. Теперь нужно протравить плату. Для этого заготовку на некоторое время помещают в раствор хлористого железа. Раствор готовится из расчета 150г порошка на 200мл воды. Плата будет готова, когда все лишнее медное покрытие растворится, и останутся лишь участки защищенные тонером. Протравленную плату нужно промыть в холодной воде. Тонер удаляется с помощью ацетона. Дорожки нужно покрыть припоем при помощи паяльника, площадки под SMD-элементы должны быть покрыты ровным слоем, без капель. Плата готова.
  2. С помощью программатора нужно прошить микроконтроллер. Для прошивки контроллера ATMega16A нужен программатор и софт. Используем недорогой и удобный программатор USBasp и программу AVRdude с графической оболочкой для удобства работы. Для подключения МК к компьютеру нужно найти по документации ножки SCK, RESET, MOSI, MISO и соединить их с соответствующими ножками программатора. После этого программатор можно подключать к порту USB. В программе AVRdude следует выбрать тип микроконтроллера — Atmega16A, и прошивку. Чтобы прошить контроллер нужно нажать кнопку Write для записи. Микроконтроллер прошит.
  3. Все элементы следует припаять к плате согласно схеме. На этом этапе нужно обратить внимание на правильное расположение микроконтроллера и аккуратно припаять его ножки так, чтобы случайно не замкнуть.
  4. С лицевой стороны платы устанавливаются светодиодные индикаторы, чтобы получился цельный блок.
  5. Полученную конструкцию можно поместить в какой-либо корпус, а индикаторы защитить при помощи стекла или прозрачного пластика. В зависимости от яркости светодиодов, можно выбрать затемненное защитное стекло — это улучшит читаемость.

О некоторых особенностях при сборке часов на светодиодной матрице с ATMega 16A доступно рассказывается в следующем видео.

Часы на светодиодных матрицах имеют много преимуществ перед приборами с другим типом индикации: дешевле, не засвечиваются солнцем, с их помощью можно вывести большее количество информации.

Существует большое количество моделей часов на led матрицах, и каждый найдет для себя девайс с требуемым функционалом.

Также такие часы несложно изготовить самому, как вы увидели из пошагового руководства выше, это не требует особенных инструментов или специальных навыков.

Источник: http://ledno.ru/svetodiody/matricy/samodelnye-chasy.html

Проект за пару дней: большой дисплей из светодиодных лент

САМОДЕЛЬНАЯ СВЕТОДИОДНАЯ МАТРИЦА

Полгода назад мы дополнили наш почти традиционный офисный каток 7,6 тыс. светодиодами, чтобы транслировать изображения и видео прямо на поверхность льда. На гиктаймсе был опубликован пост, в котором рассказывалось о том, что подо льдом скрывается самый настоящий гигантский дисплей разрешением 120х63 «пикселей», на который можно выводить достаточно сложные и яркие изображения.

Часто нам задавали вопрос: можно ли своими руками сделать нечто подобное дома? Можно, почему нет? Про лед был подробный рассказ (вот история о первом катке — захватывающее чтиво в июльскую жару), а вот о способах превращения светодиодов в большой дисплей практически не упоминали.

Так как наши мейкеры люди занятые и предпочитают говорить о чем-то новом, а не пережевывать прошлое, публикация этой статьи откладывалась снова и снова.

В конечном счете мы решили перевести для вас понятный и наглядный туториал, после которого можно будет взять и повесить дисплей себе на стену.

Итак, выдохните, все будет просто. Бóльшая часть времени уйдет на сборку — придется немного покорпеть над соединением лент друг с другом. Они должны быть спаяны в последовательную цепь на задней стороне панели. Для рассеивания света защитное стекло будет матированным. Главный вопрос проекта — какое ПО использовать? Здесь все зависит от ваших потребностей: мы начнем с демокода и указателей, а в одной из следующих статей рассмотрим, как выводить на дисплей уведомления и котировки акций.

Что нам понадобится

  • 10 м светодиодной ленты (продается в катушках по 5 м). Я использовал дешевый вариант — WS2812B. Если же вам хочется получить более высокое разрешение дисплея, можете приобрести ленту с плотностью 60 светодиодов/метр;
  • блок питания на 5 В и 10 А.

    Я использовал модель, у которой входное питание до 240 В подается на винтовые зажимы. Если вам нужно сделать дисплей более безопасным, выберите полностью закрытый блок питания;

  • Arduino UNO;
  • большое количество отрезков толстого провода.

    Я отрезал пучок от старого компьютерного блока питания;

  • фоторамка 50х50 см;
  • матирующий спрей и белая краска.

Общие затраты у меня получились меньше $100.

Также вам понадобятся инструменты:

  • паяльник с припоем;
  • клеевой пистолет;
  • нож или ножницы;
  • инструмент для снятия изоляции.

Сначала прочитайте пособие по работе с электроникой для начинающих!

Расчеты

Если вы приобрели рамку 50х50 см и такие же светодиодные ленты, как у меня, то сможете уместить в дисплей 15 отрезков по 15 светодиодов. Но ничто не мешает использовать рамку другого размера. Расстояние между светодиодами — около 30 мм, таким образом на один пиксель приходится примерно 30 мм2. Это наш 1DPI. Ну да, разрешение не как у Retina.

Рассчитайте, сколько отрезков ленты вам понадобится, и расчертите направляющие с обратной стороны панели. Семь раз проверьте, один раз отрежьте: у меня ленты немного различаются, потому что когда я начал их приклеивать, то обнаружил, что могу вместить только 14 отрезков по 15 светодиодов. Но это не страшно — в приложении можно легко настроить разное количество рядов пикселей и их длину. Отрежьте куски, подходящие для вашей рамки. К сожалению, я обнаружил, что у меня 15-е светодиоды в отрезках приходятся как раз на то место, где нужно припаивать соединительные провода. Поэтому пришлось их выпаивать.

Матирование стекла

Для лучшего рассеивания света я решил нанести на обе стороны стекла матирующий спрей. Делать это лучше на улице или на балконе, так как спрей вреден для здоровья. Наносить его необходимо как можно более равномерно.

После высыхания матирование получается очень устойчивым, но изначально необходимо добиться равномерного покрытия без каких-либо царапин. Также задуйте белой краской панель, которая будет видна сквозь стекло.

Отрежьте один из углов — здесь пройдут провода.

Крепление светодиодных лент

Для приклеивания лент к панели используйте суперклей. Я пробовал двусторонний скотч, но через несколько недель он отвалился. Клеевой пистолет еще хуже, ведь обе поверхности — панель и обратная сторона ленты — гладкие и не имеют пор.

Если вы приобрели светодиодные ленты в резиновом корпусе, то не сильно переживайте относительно точности размещения — их можно свободно двигать. Помните, что сигнал будет проходить через всю цепь, и у каждой ленты есть направление передачи сигнала.

Ленты нужно размещать так: у одной стрелка (направление сигнала) указывает направо, у следующей — налево, потом опять направо и т.д. То есть сигнал по дисплею будет идти «змейкой». Проверьте еще раз правильность размещения лент, прежде чем клеить их!

Пайка

Для соединения лент требуется по три провода разной длины. Внутреннюю пару контактов соединяем самым коротким проводом (на фото — красный), для средней пары берем провод подлиннее, а к внешним контактам припаиваем самый длинный.

В зависимости от того, какие ленты в данный момент соединяются, внутренние контакты будут либо питанием (+5V), либо заземлением (GND). Прежде чем припаивать провода, залудите их и сами контакты на лентах. На это уйдет больше всего времени, но это крайне важный момент.

Не торопитесь, дважды проверьте правильность соединяемых контактов!

Фиксация лент

После возни с подключением проводов вы можете обнаружить, что первая лента сдвинулась. Эту проблему я решил следующим образом: просверлил два маленьких отверстия и зафиксировал ленту стяжкой. Если у вас не было под рукой достаточно сильного клея, то таким образом можно дополнительно зафиксировать все ленты с обоих концов.

Проверка подключения

Шестой пин Arduino используется для передачи управляющего сигнала; напряжение питания должно подаваться напрямую от блока питания. Подключите заземление между лентами, Arduino и блоком питания. Не пытайтесь запитать ленты от Arduino, а также не подключайте блок питания к Arduino при подключенном USB (когда будет загружаться код для тестирования).

Скачайте и добавьте в соответствующую папку библиотеку AdafruitNeoPixel, затем запустите Arduino. Протестируйте подключение с помощью следующего кода, указав в первом параметре количество светодиодов (в нашем примере — 60):

Adafruit_NeoPixel strip =Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

Если анимация остановится на каком-то ряду, сразу отключите всю конструкцию и проверьте подключение. Возможные причины сбоя:

  • неправильное направление ленты;
  • вы спутали контакты при соединении лент;
  • вы припаяли +5V к GND.

Поскольку рамка не была рассчитана на такую глубину размещения панели, мне пришлось сначала зафиксировать стекло клеевым пистолетом, а затем по периметру вставить резиновый уплотнитель, работающий буфером между стеклом и панелью со светодиодами. После завершающего тестирования помещаем панель в рамку и фиксируем ее клеевым пистолетом. В углу можно проделать небольшое отверстие для вывода проводов. Все, техническая сторона проекта завершена. Можете еще подумать над тем, возможно ли спрятать в рамке еще и блок питания с Arduino. А пока переходим к настройке ПО.

Glediator

Программа Glediator компании SolderLab.de очень хорошо подходит для анимирования светодиодных матриц на вечеринках или в ночных клубах.

Она способна управлять матрицей, состоящей из 512 светодиодов WS2812/NeoPixels, формируя до 24 кадров/сек — этого вполне достаточно для нашего дисплея, можно даже выводить на него простенькие анимационные гифы. Микшер позволит делать плавные переходы между анимациями.

Для работы с Glediator установите на Arduino UNO прошивку, и проверьте, чтобы сигнальный кабель был подключен к пину 6. Не забудьте прописать в переменной количество используемых вами светодиодов.

Запустите Glediator, откройте свойства и измените размер матрицы и режим вывода. Настройте порядок пикселей, если у вас используется другая схема, но по этому шагу мало документации, поэтому придется действовать методом проб и ошибок.

Если изображение на дисплее отличается от задуманного, попробуйте поиграть с настройками.

У меня работал порядок пикселей HS_BL — подозреваю, что это означает «horizontalsnake, startingbottomleft» (горизонтальная змейка, начало слева внизу).

Glediator — профессиональное приложение, не будем пока изучать его интерфейс и возможности. Загрузите в левое и правое окна разные анимации, затем двигайте микшер между ними. Или используйте готовый плейлист, который показан в видеоролике.

Библиотеки Adafruit NeoMatrix и Adafruit GFX

Компания Adafruit создала очень полезную библиотеку для работы со светодиодными матрицами. Сначала она называлась Adafruit GFX, и изначально предназначалась для TFT- и LCD-дисплеев.

Затем появилась модификация NeoMatrix, позволяющая полноценно работать с матрицами NeoPixel. Она имеет огромное количество простых в использовании функций по выводу текста или растровой спрайтовой графики.

Если вы в точности повторили мой проект, то можете воспользоваться этим кодом. Самая важная часть:

#define XSIZE 15#define YSIZE 14#define PIN 6Adafruit_NeoMatrix matrix =Adafruit_NeoMatrix(XSIZE, YSIZE, PIN,NEO_MATRIX_BOTTOM + NEO_MATRIX_LEFT +NEO_MATRIX_ROWS + NEO_MATRIX_ZIGZAG,NEO_GRB+NEO_KHZ800); С первыми строками все понятно. В последних трех описывается схема матрицы: в данном случае первый пиксель находится слева внизу (bottomleft), пиксели расположены рядами (rows), соединенными зигзагообразно (zigzag). Если вы сделали иначе, то обратитесь к документации библиотеки.

Я задал в коде несколько спрайтов — смайлы. Вы можете создать собственные с помощью Java-приложения Img2Code, лежащего в папке библиотеки GFX.

В будущем мы рассмотрим использование библиотеки для вывода полезной информации вроде котировок акций или ленты , а пока предлагаю вам самостоятельно поиграть с кодом и загрузить собственные изображения.

На этом все. Вы создали большой дисплей из светодиодных лент. Теперь нужно придумать, как его использовать. Из оставшихся светодиодов можете создать лампу в виде облачка.

Источник: https://habr.com/post/395519/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.