УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

Принцип работы умножителя напряжения

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

При решении схемотехнических задач бывают случаи, когда необходимо уйти от применения трансформаторов для увеличения выходного напряжения. Причиной тому чаще всего оказывается невозможность включить в устройства повышающие преобразователи из-за их массогабаритных показателей. В такой ситуации выходом является использование схемы умножителя.

Умножитель напряжения – определение

Устройство, под которым подразумевают умножитель электричества – это схема, позволяющая преобразовывать напряжение переменного тока или пульсирующее в постоянное, но более высокое по значению. Возрастание величины параметра на выходе прибора прямо пропорционально числу каскадов схемы. Самый элементарный из существующих умножителей напряжения был придуман учеными Кокрофтом и Уолтоном.

Современные конденсаторы, разработанные радиоэлектронной промышленностью, характеризуются небольшими размерами и сравнительно большой емкостью. Это позволило перестроить многие схемы и внедрить изделие в разные устройства. Собран умножитель напряжения на диодах и конденсаторах, подключенных своим порядком.

Кроме функции повышения электричества умножители одновременно преобразуют его из переменного в постоянное. Это удобно тем, что общая схемотехника прибора упрощается и становится более надежной и компактной. С помощью прибора можно достичь увеличения до нескольких тысяч вольт.

Умножители нашли свое применение в разных типах устройств, это: системы лазерной накачки, устройства излучения рентгеновской волны в их блоках высокого напряжения, для подсветки дисплеев жидкокристаллической структуры, насосах ионного типа, лампах бегущей волны, ионизаторах воздушной среды, системах электростатических, ускорителях элементарных частиц, аппаратах для копирования, телевизорах и осциллографах с кинескопами, а также там, где требуется высокое постоянное электричество небольшой силы тока.

Чтобы понять, как функционирует схема, лучше посмотреть работу так называемого универсального устройства. Здесь число каскадов точно не задано, а выходное электричество определяется формулой: n*Uin = Uout, где:

  • n – количество присутствующих каскадов схемы;
  • Uin – напряжение, подаваемое на вход устройства.

При начальном моменте времени, когда на схему приходит первая, допустим, положительная полуволна, диод входного каскада пропускает ее на свой конденсатор. Последний заряжается до амплитуды поступившего электричества.

При второй отрицательной полуволне первый диод закрыт, а полупроводник второго каскада пускает ее к своему конденсатору, который также заряжается.

Плюс к этому напряжение первого конденсатора, включенного последовательно со вторым, суммируется с последним и на выходе каскада получается уже удвоенное электричество.

На каждом последующем каскаде происходит то же самое – в этом принцип умножителя напряжения. И если просмотреть прогрессию до конца, то получается, что выходное электричество превосходит входное в энное количество раз. Но как и в трансформаторе, сила тока здесь будет уменьшаться при увеличении разности потенциалов – закон сохранения энергии также работает.

Схема построения умножителя

Вся цепь схемы собрана из нескольких звеньев. Одно звено умножителя напряжения на конденсаторе представляет собой выпрямитель однополупериодного типа. Для получения прибора необходимо иметь два последовательно соединенных звена, в каждом из которых есть диод и конденсатор. Такая схема является удвоителем электричества.

Графическое изображение устройства умножения напряжения в классическом варианте выглядит с диагональным положением диодов. От направления включения полупроводников зависит то, какой потенциал – отрицательный или положительный, будет присутствовать на выходе умножителя относительно его общей точки.

При объединении схем с отрицательным и положительным потенциалами на выходе устройства получается схема двухполярного удвоителя напряжения. Особенностью такого построения является то, что если измерить уровень электричества между полюсом и общей точкой и он превысит входное напряжение в 4 раза, то величина амплитуды между полюсами возрастет уже в 8 раз.

В умножителе общей точкой (которая соединена с проводом общим) будет та, где вывод питающего источника соединяется с выводом конденсатора, объединенного в группу с другими последовательно соединенными конденсаторами. В конце них берется выходное электричество на четных элементах – при четном коэффициенте, на нечетных конденсаторах, соответственно, при нечетном коэффициенте.

Накачка конденсаторов в умножителе

Иначе говоря, в устройстве умножителя постоянного напряжения происходит некоторый переходный процесс установления параметра на выходе соответствующего заявленному. Легче всего увидеть это на примере удвоения электричества.

Когда через полупроводник D1 конденсатор C1 зарядится до полного значения, то в следующую полуволну он вместе с источником электричества одновременно заряжает второй конденсатор.

C1 не успевает полностью отдать свой заряд C2, поэтому на выходе сперва не присутствует удвоенная разность потенциалов.

При третьей полуволне первый конденсатор подзаряжается и далее прикладывает потенциал к C2. Но напряжение на втором конденсаторе уже имеет встречное направление к первому. Поэтому выходной конденсатор подзаряжается не полностью. С каждым новым циклом электричество на элементе C1 будет стремиться к входному, напряжение C2 к удвоенному по величине.

Как рассчитать умножитель

Выполняя расчет устройства умножения, необходимо отталкиваться от исходных данных, которыми являются: нужный для нагрузки ток (In), напряжение на выходе (Uout), коэффициент пульсирования (Kp). Минимальная величина емкости элементов конденсаторов, выраженная в мкФ, определяется по формуле: С(n)=2,85*n*In/(Kp*Uout), где:

  • n – число, во сколько раз увеличивается входное электричество;
  • In – ток, протекающий в нагрузке (мА);
  • Kp – коэффициент пульсирования (%);
  • Uout – напряжение, полученное на выходе устройства (В).

Увеличивая полученную расчетами емкость в два или три раза, получают величину емкости конденсатора на входе схемы C1.

Такой номинал элемента позволяет получить на выходе сразу полное значение напряжения, а не ждать, пока пройдет некоторое количество периодов.

Когда работа нагрузки не зависит от скорости нарастания электричества до номинального на выходе, емкость конденсатора можно взять идентичную расчетным значениям.

Лучше всего для нагрузки, если коэффициент пульсаций умножителя напряжения на диодах не превышает величины 0,1 %. Удовлетворительным также является наличие пульсаций до 3 %.

Все диоды схемы выбирают из расчета, чтобы они свободно могли выдержать силу тока, в два раза превышающую его значение в нагрузке.

Формула расчета прибора с большой точностью выглядит так: n*Uin — (In*(n3 + 9*n2/4 + n/2)/(12 *f* C))=Uout, где:

  • f – частота напряжения на входе устройства (Гц);
  • C – конденсаторная емкость (Ф).

Преимущества и недостатки

Говоря о преимуществах умножителя напряжения, можно отметить следующие:

  • Возможность получать на выходе значительные величины электричества – чем больше звеньев цепи, тем больший коэффициент умножения получится.
  • Простота конструкции – все собрано на типовых звеньях и надежных радиоэлементах, редко выходящих из строя.
  • Массогабаритные показатели – отсутствие громоздких элементов, таких как силовой трансформатор, уменьшают размеры и вес схемы.

Самый большой недостаток любой схемы умножителя в том, что невозможно получить при помощи его большой ток на выходе для питания нагрузки.

Заключение

Выбирая умножитель напряжения для конкретного устройства. важно знать, что симметричные схемы имеют лучшие параметры в плане коэффициента пульсаций, нежели несимметричные. Поэтому для чувствительных аппаратов целесообразнее использовать более стабильные умножители. Несимметричные простые в изготовлении, содержат меньше элементов.

Источник: https://FB.ru/article/61679/umnojitel-napryajeniya-printsip-rabotyi-i-sfera-primeneniya

Шокер на УН (Умножитель напряжения) схема

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

Шокер на ун.

Данный вид шокера довольно прост в изготовлении и поэтому любим новичками. Так же его любят те кто гонится за мощностью на выходе. Потерь на умножители почти нет и лампочка от него, при хорошем питании, светится очень ярко.

У злого шокера, за счет незначительных потерь на проводах вторички, при том же инверторе и том же питании мощность чуть ниже. На это и склоняются придурки с чушокера, поливая злой шокер и автора.

При малых размерах, с использованием аккумуляторов lipo, можно добиться высоких мощностей.

Искра на выходе яркая, голубовато-белая, с очень резким треском. Как психологическое оружие и отпугиватель собак зарекомендовал себя с самой лучшей стороны. И действительно, самому становится страшно, когда видишь такие искры.

А теперь немного познавательной инфы для ебланушек с чушокера. Их любимый умножитель рис 3. (ниже) с капами 2200 * 6кв. Имеет следующие показатели импульса –  5.8мкс при пике 5 кв. Замеры проводил urez83.

Теперь давайте рассмотрим отрицательные стороны шокеров на ун.

1. Параметры импульса полностью зависят от расстояния. Ближе электроды к тушке – выше частота, слабее импульс. На голое тело без дополнительного разрядника вообще не ощущается.

2. Очень короткий импульс. Всего 5 мкс 10 кв..и это при зазоре 0.5 см!!!! Замеры проводил Urez83

3. На высоких частотах жжет кожу, не оказывая воздействия на глубокие ткани. Создает довольно сильные болевые поверхностные ощущения.

4. При бездумном повышении мощности может быть смертельным, охота ли потом сидеть за гопаря?

5. Бесполезные китайские говношокеры работают как раз по этому принципу.

6.Отвратительный пробой одежды(в сравнении с трансформаторными ЭШУ).Яростно почитаемый некоторыми даунами умножитель-не пробивает кожаный ремень.

А китайские говношокеры построенные по схеме с умножителем как правило не пробивают даже свитер.На чушокере был чел с ником Эквадорец,который наглядно это демонстрировал,но был закидан говном.

Ибо по мнению гречки мощность не дошедшая до тела это тоже мощность 🙂

7.ДЛЯ ТЕХ ДАУНОВ КТО ЕЩЕ НЕ ПОНЯЛ.Умножительный шокер-не более чем страшная трещотка,внушающая противнику ужас внешним видом разряда.”валить” противника данный агрегат не способен..

При дибильном повышении мощности(когда некоторые армянские долбаебы закачивают в умножители по нескольку десятков ватт -производит термическое воздействие(глубокие ожоги)засчет охуенной частоты разрядов в единицы а то и десятки килогерц,при приближении выводов умножителя к телу.Небольшой искровой промежуток на выходе ситуацию не спасет.

После применения с вероятностью 95% окажется в жопе применявшего.Для тех кто не верит-данный агрегат с гордым названием АКА 22 и мощностью 70 ватт(пиздеж). был испытан 1 из наших пользователей.Последствия можно наблюдать на фото ниже.

Воздействие 1 секунда,по словам человека в момент разряда девайс дает лишь сильную боль,никакого эффекта “сковывания мышц” и “моментальной парализации” как пишут некоторые обдолбанные ебланы НЕТУ.На месте применени остается охуенный термический ожог который заживает около месяца.Кстати с таким ожогом можно спокойно сходить в ментовку и накатать заяву за наненесение телесных повреждений и причинение вреда здоровью.

Если до этого вы не делали шокер на ун, лучше вам его собрать и поэкспериментировать. Тем более если вы новичок, собрать свой первый шокер будет намного легче.

Теперь приступим к сборке.

Инвертор подберите тот, который будет лучше подходить вашим аккумуляторам.

1. Инвертор (обведен красным) от оригинала ЗШ, или (мартовская схема). В нашем случае вместо диодного моста будет стоять симметричный умножитель.

Инвертор №1. Прекрасно работает с низковольтным питанием. Запускается от 3.7 в. Отлично работает от 7.4в. Аккумуляторы должны быть способны отдавать большой ток. Сколько способны будут отдать аккумуляторы, столько и будет потреблять схема.

Подойдут LiPo (литий полимеры) NiCd (никель-кадмиевые) NiMh (никель-металлгидриды). Не советую ставить Li-Ion (литий-ионные) на таких нагрузках они сильно греются и могут прийти в негодность. Внимание!!! При использовании хороших аккумуляторов в разрыв (+) необходимо поставить дроссель.

Ферритовое колечко на котором будет около 20 витков. Можно дернуть уже намотанное со старой материнской платы. Трансформатор На броневом сердечнике (лучше в плане кпд) или Ш-образный (легче мотать) первичная 3+3 витка проводом 0,3-0,4 сложенным в несколько раз (поверх вторички), вторичка 800-1000витков.

Мотаем виток к витку, послойно изолируем, а затем пропитываем в медицинском парафине.

И примеры умножителей, ставятся они сразу после трансформатора.

Я лично ставил первый, второй не пробовал. (рис. 1;2)

Конкуренты любят ставить этот умножитель. (рис. 3)

  Инвертор 2. На uc3845. Об расчете частоты и подгонке микросхемы описано тут.

Схема запускается от 9вольт, оптимально питать с 12-14в. Потребление тока фиксированное, 2-3А зависит от настроек. Подходят все виды аккумуляторов. При правильной настройке полевик не должен сильно греться. С использованием данного инвертора баловаться шокером намного дольше, чем с инвертором выше.

Мощность при этом соответственно уменьшится. Трансформатор 6-8 витков первичка (поверх вторички) 400 витков вторичка. Мотается послойно виток к витку, с изоляцией через слой. Затем протапливается в жидком-разогретом медицинском парафине.

При использовании данного(да и любого однотактного преобразователя) преобразователя необходимо ставить последовательный умножитель.

Последовательный “множик” (рис.4)
 

Далее приведены наиболее известные схемы умножителей напряжения

 

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

Особенности: универсальность, низкая нагрузочная способность

Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

Особенности: хорошая нагрузочная способность.

Особенности: хорошая нагрузочная способность.

Особенности: симметричная схема, хорошая нагрузочная способность.

Особенности: симметричная схема, хорошая нагрузочная способность.

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Особенности: хорошая нагрузочная способность.

Особенности: хорошая нагрузочная способность.

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Особенности: симметричная схема, хорошая нагрузочная способность.

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Особенности: нагрузочная характеристика имеет две области – область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Ну вот собственно и все, сложного ничего нет. Паяем инверторы, мотаем трансформаторы, цепляем множики, настраиваем и радуемся громкому треску.Также настоятельно не рекомендуется коротить выход УН без разрядника-есть риск выгорания транзисторов генератора,или же диодов в умножителе.

Источник: http://elektroshoker.org/news/shoker_na_un_umnozhitel_naprjazhenija_skhema/2014-04-05-22

Опасное развлечение: простой генератор высокого напряжения Кокрофта-Уолтона

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

Добрый день, уважаемые хабровчане.

Этот пост будет небольшим и не очень обучающим, но может быть кому-нибудь покажется интересным.

В нем я расскажу вам, как сделать очень маленький, полностью SMD-шный и легко масштабируемый генератор Кокрофта-Уолтона, или попросту умножитель напряжения, который на вход получает переменные N вольт, а на выходе выдает постоянные x*N вольт, где x — число ступеней.

Предупреждаю: так как на выходе стоят конденсаторы (собственно, как и на входе, кроме конденсаторов и диодов в нем ничего и нет), удар тока, скорее всего, окажется для вас смертельным. Собирайте схему на ваш страх и риск и только в том случае, если понимаете, что делаете. Я не несу никакой ответственности за вашу жизнь, здоровье и психику.

Не испугались? Тогда идем дальше.

Предыстория и предпосылки

Собственно, предыстория очень простая — этот генератор высокого напряжения — один из самых простых схемотехнически, не содержит огромных катушек, в отличие от Трансформатора Теслы и весьма легок в сборке. Результаты, конечно, тоже менее впечатляющие, чем у Теслы — на выходе мы имеем не высокое напряжение большой частоты, а просто высокое напряжение.

Поэтому, во-первых, красивых коронных разрядов можно не ждать, а во-вторых, в отличие от Теслы, разряд генератора Кокрофта-Уолтона лишен скин-эффекта, поэтому, вероятнее всего, смертелен. Следует соблюдать большую осторожность.

В общем, когда-то я собрал себе умножитель по традиционной схеме (рассмотрим чуть позже), из больших конденсаторов и диодов, который выглядел вот так: Было в нем 15 ступеней, конденсаторы на 400В х 0.1 мкФ и диоды на 1000В х 1А.

Для того, чтобы его запитать, я собрал небольшой инвертер из валявшегося под рукой трансформатора 220В->6В, который, судя по искре, выдавал на выходе больше киловольта, из-за чего постоянно вылетали диоды (конденсаторы оказались более живучими, но изредка помирали и они).

Искра на выходе была около 5 мм, легко пробивала бумагу и звучала как выстрел из пистолета с пистонками (думаю, у многих в детстве такой был…). Чтобы добиться более впечатляющих результатов, нужно было наращивать число ступеней, что, при такой конструкции, мне совершенно не хотелось делать — колбаса из конденсаторов и так была слишком большой.

В общем, поразвлекавшись с пробиванием бумажек, я забросил свой умножитель.

Но спустя пару лет увидел в магазине smd.ru просто потрясающие, на мой взгляд, конденсаторы. Тем, кто работает с такими каждый день, как мой друг Aregus, они, конечно, были не в новинку. Но для меня SMD-конденсатор, рассчитанный на 1000В и 0.1 мкФ, после здоровенных 400В кондеров из моего старого умножителя показались просто чудом. Поэтому я не сдержался и развел небольшую плату умножителя.

Если посмотреть видео на по запросу Cockcroft–Walton generator, можно найти, конечно, куда более зрелищные результаты с многокиловольтным выходом. Однако все они собраны на здоровенных кондерах для монтажа в отверстия и, чаще всего, точно так же висят в воздухе, как мой первый генератор. Я разводил свою плату так, чтобы она была:

1) маленьких размеров 2) полностью SMD 3) легко масштабируемой. В итоге получилась плата размером 35х45 мм, с креплениями по углам под стандартную стойку. На плате расположено 10 ступеней, максимальное входное напряжение — до 500В. Плата выдерживает и больше, но тогда периодчески умирают диоды. Если брать напряжение пробоя воздуха в 30 КВ/см, то максимум, что она выдавала — несколько разрядов в 10-15 КВ, после чего выбивало один из диодов. При работе в номинальном режиме такого, разумеется не происходит — ее можно запитать, например, от 220В, получив на выходе около 3111В без ущерба для ее компонентов. И, самое главное — можно легко сделать десяток таких плат, составить из них башню, пользуясь стойками, и получить умножитель в 100 раз. Рассмотрим схемотехнику платы.

Железо

Схемотехнически плата очень простая. Это типовая схема генератора Кокрофта-Уолтона, умножителя напряжения, которая хорошо описана в википедии. Также там описан механизм его работы: Благодаря диодам, конденсаторы по очереди заряжаются до удвоенного напряжения питания, соответственно на выходе имеем напряжение, возросшее в N раз, где N — количество конденсаторов в цепи.

Разумеется, конденсаторы следует подбирать так, чтобы они выдерживали это самое удвоенное напряжение, поэтому, т.к. конденсаторы в схеме рассчитаны на 1000В, максимум что можно подать на них не боясь отказа — 500В. Для ровного счета я взял 10 ступеней.

Далее я развел плату:
Верхняя сторона
нижняя сторона Можно было, в принципе, уменьшить размеры еще сильнее, но я решил не мельчить, чтобы ненароком не пробило где не надо. Дорожки специально делал потолще, т.к. недостатка в площади в силу предыдущего пункта не испытывал. В общем, плату легко изготовить ЛУТом или фоторезистивным методом в домашних условиях. Но т.к.

мне все равно нужно было заказывать несколько плат по работе, я разместил на той же заготовке три модуля умножителя, благо они почти не занимали места.

Результаты

В результате с производства мне приехала вот такая замечательная плата: В уже упомянутом магазине я закупил 10 конденсаторов и 10 диодов (на самом деле несколько больше, с запасом, и не зря — я все-таки не удержался и запитал умножитель от своего инвертора, напряжение на выходе которого явно выше того, на которое рассчитаны конденсаторы и диоды, в результате чего мне выбило входной диод через три-четыре разряда). После сборки получаем вот такой модуль: Он же в окружении моего старенького инвертора изображен на самой первой фотографии статьи. Я долго не решался подключить его к 220 вольтам — видимо, сказывалось то, что я цифровик и ни разу не высоковольтник. Очень не хотелось застрелиться из генератора, который сам собрал, в день своего двадцатипятилетия. Но в итоге я все-таки пересилил себя и запитал модуль от розетки, включив последовательно с чайником, который выступал в роли токоограничительного сопротивления — при мощности чайника в 1 КВт максимальный ток, который бы потек, в случае КЗ в схеме был бы не более 4.5А. К счастью, схема заработала с первого раза в силу своей простоты. Ниже привожу видео работы. К сожалению, моя камера не может запечатлеть нормально недлинные, но яркие разряды и нормально захвать сопутствующий звук. Зато, если смотреть в HD, хорошо видно как разряды насквозь пробивают бумажку. Для тех, кто не хочет ради этого смотреть видео в HD — фото пробитой бумажки (пробито много раз в верхнем правом углу): Кстати, на видео, наверное, незаметно, но в живую ясно видно, что когда между электродами вставлена бумажка, искра приобретает красноватый оттенок — видимо, из-за прогорающего вещества. В целом конденсаторы и диоды обошлись мне рублей в 200-300 (по 15 штук и тех и тех), сейчас уже не помню точно, а на сайте цену не пишут.

Производство платы мне обошлось в 2600 рублей в московском Резоните. Но следует помнить, что, во-первых, в заказе было шесть плат, только три из которых — платы умножителя. Суммарный размер заготовки был около 100х200 мм.

А во-вторых, из этих 2600 рублей 1800 стоила подготовка к производству и 350 — доставка, так что сами платы вышли очень даже дешево. Думаю, найдется множество несогласных, но при такой цене на платы, у меня просто рука не поднимается возиться с их изготовлением дома — теперь я предпочитаю отработать по максимуму на макетках, накопить несколько различных плат, после чего заказать их все разом. В дальнейших планах дозаказать-таки десяток таких плат и собрать башню на 30+ киловольт.

На этом у меня все, берегите себя и осторожнее с высоким напряжением.

  • высокое напряжение
  • генератор кокрофта-уолтона
  • hv
  • high voltage

Источник: https://habr.com/post/175207/

Умножитель напряжения

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

После того как на современном рынке электроники появились миниатюрные конденсаторы, имеющие большую емкость, стало возможным использование в электронных схемах методики, связанной с умножением напряжения.

Для этих целей разработано специальное устройство – умножитель напряжения, основой которого являются диоды и конденсаторы, подключенные в определенном порядке.

Суть работы этого устройства заключается в преобразовании переменного напряжения, получаемого из низковольтного источника, в высокое напряжение постоянного тока.

Благодаря малым габаритам данных приборов, существенно снизились и конечные размеры проектируемых электронных устройств. Существуют различные варианты данных приборов, в том числе умножитель напряжения Шенкеля и другие схемы, проектируемые для конкретной аппаратуры.

Общие сведения об умножителях напряжения

В электронике к умножителям напряжения относятся специальные схемы, с помощью которых уровень входящего напряжения преобразуется в сторону увеличения.

Одновременно эти устройства выполняют еще и функцию выпрямления.

Умножители применяются в тех случаях, когда нежелательно использовать в общей схеме дополнительный повышающий трансформатор из-за сложности его устройства и больших размеров.

В некоторых случаях трансформаторы не могут поднять напряжение до требуемого уровня, поскольку между витками вторичной обмотки может случиться пробой. Данные особенности следует учитывать при решении задачи, как сделать различные варианты удвоителей своими руками.

В схемах умножителей обычно используются свойства и характеристики однофазных однополупериодных выпрямителей, работающих на емкостную нагрузку.

В процессе работы этих устройств между определенными точками создается напряжение с величиной, превышающей значение входного напряжения. В качестве таких точек выступают выводы диода, входящего в схему выпрямителя.

При подключении к ним еще одного такого же выпрямителя, получится схема несимметричного удвоителя напряжения.

Таким образом, каждый умножитель напряжения как повышающее устройство может быть симметричным и несимметричным. Кроме того, все они разделяются на категории первого и второго рода.

Схема симметричного умножителя представляет собой две несимметричные схемы, соединенные между собой. У одной из них происходит изменение полярности конденсаторов и проводимости диодов.

Симметричные умножители имеют лучшие электрические характеристики, в частности выпрямляемое напряжение обладает удвоенной частотой пульсаций.

Различные типы таких приборов повсеместно используются в электронной аппаратуре и оборудовании. С помощью этих устройств появилась возможность осуществлять умножение и получать напряжение в десятки и сотни тысяч вольт. Сами умножители напряжения отличаются незначительной массой, малыми габаритами, они просты в изготовлении и дальнейшей эксплуатации.

Принцип работы

Для того чтобы представить себе как работает умножитель напряжения, рассматривается простейшая схема однополупериодного устройства, показанного на рисунке. Когда начинает действовать отрицательный полупериод напряжения, диод Д1 открывается и через него осуществляется зарядка конденсатора С1. Заряд должен сравняться с амплитудным значением подаваемого напряжения.

При наступлении периода с положительной волной происходит зарядка следующего конденсатора С2 через диод Д2. В этом случае заряд приобретает высокие удвоенные значения по сравнению с поданным напряжением.

Далее наступает отрицательный полупериод, в течение которого до удвоенного значения заряжается конденсатор С3. Таким же образом, во время дальнейшей смены полупериода, выполняется зарядка конденсатора С4, вновь с удвоенным значением.

Для того чтобы запустить устройство, требуются полные периоды напряжения в количестве нескольких циклов, создающие напряжения на диодах.

Величина напряжения, получаемая на выходе, состоит из суммы напряжений конденсаторов С2 и С4, соединенных последовательно и заряжаемых постоянно.

В конечном итоге, образуется величина выходного переменного напряжения, которое в 4 раза превышает значение напряжения на входе. В этом и заключается принцип работы умножителя напряжения.

Самый первый конденсатор С1, полностью заряженный, имеет постоянное значение напряжения. То есть, он выполняет функцию постоянной составляющей Ua, применяемой в расчетах.

Следовательно, можно и дальше наращивать потенциал умножителя, подключая дополнительные звенья, сделанные по тому же принципу, поскольку напряжение на диодах в каждом из этих звеньев будет равно сумме входного напряжения и постоянной составляющей.

За счет этого получается любой коэффициент умножения с требуемым значением. Напряжение на всех конденсаторах, кроме первого будет равным 2х Ua.

Если в умножителе используется нечетный коэффициент, для подключения нагрузки используются конденсаторы, расположенные в верхней части схемы. При четном, наоборот, задействуются нижние конденсаторы.

Примерный расчет схемы умножителя

Перед тем как начинать расчет, задаются основные характеристики устройства. Это особенно важно, когда необходимо изготовить умножитель напряжения своими руками.

В первую очередь, это значения входного и выходного напряжения, мощность и габаритные размеры. Следует учитывать и некоторые ограничения, касающиеся параметров напряжения.

Его величина на входе должна быть не более 15 кВ, границы диапазона частоты составляют от 5 до 100 кГц.

Рекомендуемое значение выходного высоковольтного напряжения – не выше 150 кВ. Величина выходной мощности умножителя напряжения составляет в пределах 50 Вт, хотя можно создать устройство и с более высокими параметрами, в котором мощность достигает даже 200 Вт.

Выходное напряжение находится в прямой зависимости с токовыми нагрузками и его можно рассчитать с помощью формулы: Uвых = N х Uвх – (I (N3 + +9N2 /4 + N/2)) / 12FC, в которой N соответствует количеству ступеней, I – токовой нагрузке, F – частоте напряжения на входе, С – емкости генератора. Если заранее задать требуемые параметры, данная формула поможет легко рассчитать, какая емкость должна быть у конденсаторов, применяемых в схеме.

Источник: https://electric-220.ru/news/umnozhitel_naprjazhenija/2018-02-09-1453

Умножитель напряжения ⋆ diodov.net

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.

Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.

Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.

В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.

Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Схема двухполупериодного умножителя состоит из двух диодов и двух конденсаторов, подключенных со стороны вторичной обмотки трансформатора.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.

В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.

Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.

Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.

К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

Если данную схему применить без трансформатора, непосредственно подключить к 220 В, то на выходе получим приблизительно 930 В.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

Источник: https://diodov.net/umnozhitel-napryazheniya/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.