СЧЕТЧИК НА МИКРОСХЕМЕ

Счетчики импульсов – Конструкторское бюро онлайн

СЧЕТЧИК НА МИКРОСХЕМЕ

Счетчик импульсов

Скачать 3D модель счетчика импульсов

Принцип действия

Цифровой счетчик импульсов – это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время.

Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2n – 1, где n – число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0.

Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие – счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным.

В качестве исходного состояния принят нулевой уровень на всех выходах триггеров (Q1 – Q3 ), т. е. цифровой код 000. При этом старшим разрядом является выход Q3 . Для перевода всех триггеров в нулевое состояние входы R триггеров объединены и на них подается необходимый уровень напряжения (т. е.

импульс, обнуляющий триггеры). По сути это сброс. На вход С поступают тактовые импульсы, которые увеличивают цифровой код на единицу, т. е.

после прихода первого импульса первый триггер переключается в состояние 1 (код 001), после прихода второго импульса второй триггер переключается в состояние 1, а первый – в состояние 0 (код 010), потом третий и т. д. В результате подобное устройство может досчитать до 7 (код 111), поскольку 23 – 1 = 7.

Когда на всех выходах триггеров установились единицы, говорят, что счетчик переполнен. После прихода следующего (девятого) импульса счетчик обнулится и начнется все с начала. На графиках изменение состояний триггеров происходит с некоторой задержкой tз . На третьем разряде задержка уже утроенная.

Увеличивающаяся с увеличением числа разрядов задержка является недостатком счетчиков с последовательным переносом, что, несмотря на простоту, ограничивает их применение в устройствах с небольшим числом разрядов.

Классификация счётчиков

Счетчиками называют устройства для подсчёта числа поступивших на их вход импульсов (команд), запоминания и хранения результата счёта и выдачи этого результата.

Основным параметром счётчика является модуль счёта(емкость) Kс. Эта величина равна числу устойчивых состояний счётчика. После поступления импульсов Kс счётчик возвращается в исходное состояние.

Для двоичных счётчиков Kс = 2 m, где m – число разрядов счётчика.

Кроме Kс важными характеристиками счётчика являются максимальная частота счёта fmax и время установления tуст, которые характеризуют быстродействие счётчика.

Tуст – длительность переходного процесса переключения счётчика в новое состояние: tуст = mtтр, где m – число разрядов, а tтр – время переключения триггера.

Fmax – максимальная частота входных импульсов, при которой не происходит потери импульсов.

По типу функционирования:

– Суммирующие;

– Вычитающие;

– Реверсивные.

В суммирующем счётчике приход каждого входного импульса увеличивает результат счёта на единицу, в вычитающем – уменьшает на единицу; в реверсивных счётчиках может происходить как суммирование, так и вычитание.

По структурной организации:

– последовательными;

– параллельными;

– последовательно-параллельными.

В последовательном счётчике входной импульс подаётся только на вход первого разряда, на входы каждого последующего разряда подаётся выходной импульс предшествующего ему разряда.

В параллельном счётчике с приходом очередного счётного импульса переключение триггеров при переходе в новое состояние происходит одновременно.

Последовательно-параллельная схема включает в себя оба предыдущих варианта.

По порядку изменения состояний:

– с естественным порядком счёта;

– с произвольным порядком счёта.

По модулю счёта:

– двоичные;

– недвоичные.

Модуль счёта двоичного счётчика Kc=2, а модуль счёта недвоичного счётчика Kc= 2m, где m – число разрядов счётчика.

Суммирующий последовательный счётчик

Суммирующий последовательный 3х разрядный счётчик

Рис.1. Суммирующий последовательный 3х разрядный счётчик.

Триггеры данного счетчика срабатывают по заднему фронту счетного импульса. Вход старшего разряда счетчика связан с прямым выходом (Q) младшего соседнего разряда. Временная диаграмма работы такого счетчика приведена на рис.2. В начальный момент времени состояния всех триггеров равны лог.0, соответственно на их прямых выходах лог.0.

Это достигается посредством кратковременного лог.0, поданного на входы асинхронной установки триггеров в лог.0. Общее состояние счетчика можно охарактеризовать двоичным числом (000). Во время счёта на входах асинхронной установки триггеров в лог.1 поддерживается лог.1.

После прихода заднего фронта первого импульса 0-разряд переключается в противоположное состояние – лог.1. На входе 1-разряда появляется передний фронт счетного импульса. Состояние счетчика (001). После прихода на вход счетчика заднего фронта второго импульса 0-разряд переключается в противоположное состояние – лог.

0, на входе 1-разряда появляется задний фронт счетного импульса, который переключает 1-разряд в лог.1. Общее состояние счетчика – (010). Следующий задний фронт на входе 0-разряда установит его в лог.1 (011) и т.д. Таким образом, счетчик накапливает число входных импульсов, поступающих на его вход.

При поступлении 8-ми импульсов на его вход счетчик возвращается в исходное состояние (000), значит коэффициент счета (КСЧ) данного счетчика равен 8.

Временная диаграмма последовательного суммирующего счетчика

Рис. 2. Временная диаграмма последовательного суммирующего счетчика.

Вычитающий последовательный счётчик

Триггеры данного счетчика срабатывают по заднему фронту. Для реализации операции вычитания счетный вход старшего разряда подключается к инверсному выходу соседнего младшего разряда. Предварительно триггеры устанавливают в состояние лог.1 (111). Работу данного счетчика показывает временная диаграмма на рис. 4.

Последовательный вычитающий счетчик

Рис. 1 Последовательный вычитающий счетчик

Временная диаграмма последовательного вычитающего счетчика

Рис. 2 Временная диаграмма последовательного вычитающего счетчика

Реверсивный последовательный счётчик

Для реализации реверсивного счетчика необходимо объединить функции суммирующего счетчика и функции вычитающего счетчика. Схема данного счетчика приведена на рис. 5. Для управления режимом счета служат сигналы «сумма» и «разность». Для режима суммирования «сумма»=лог.1, «0»-кратковременный лог.

0; «разность»=лог.0, «1»-кратковременный лог.0. При этом элементы DD4.1 и DD4.3 разрешают подачу на тактовые входы триггеров DD1.2, DD2.1 через элементы DD5.1 и DD5.2 сигналов с прямых выходов триггеров DD1.1, DD1.2 соответственно. При этом элементы DD4.2 и DD4.4 закрыты, на их выходах присутствует лог.

0, поэтому действие инверсных выходов никак не отражается на счетных входах триггеров DD1.2, DD2.1. Таким образом, реализуется операция суммирования. Для реализации операции вычитания на вход «сумма» подается лог.0, на вход «разность» лог.1. При этом элементы DD4.2, DD4.

4 разрешают подачу на входы элементов DD5.1, DD5.2, а соответственно и на счетные входы триггеров DD1.2, DD2.1 сигналов с инверсных выходов триггеров DD1.1, DD1.2. При этом элементы DD4.1, DD4.3 закрыты и сигналы с прямых выходов триггеров DD1.1, DD1.2 никак не воздействуют на счетные входы триггеров DD1.

2, DD2.1. Таким образом, реализуется операция вычитания.

Последовательный реверсивный 3-х разрядный счетчик

Рис. 3 Последовательный реверсивный 3-х разрядный счетчик

Для реализации данных счетчиков также можно использовать триггеры, срабатывающие по переднему фронту счетных импульсов. Тогда при суммировании на счетный вход старшего разряда надо подавать сигнал с инверсного выхода соседнего младшего разряда, а при вычитании наоборот – соединять счетный вход с прямым выходом.

Недостаток последовательного счетчика – при увеличении разрядности пропорционально увеличивается время установки (tуст) данного счетчика. Достоинством является простота реализации.

Реверсивный счетчик

Рис. 3 – Реверсивный счетчик

Для счетных импульсов предусмотрены два входа: “+1” – на увеличение, “-1” – на уменьшение. Соответствующий вход (+1 или -1) подключается ко входу С.

Это можно сделать схемой ИЛИ, если влепить ее перед первым триггером (выход элемента ко входу первого триггера, входы – к шинам +1 и -1). Непонятная фигня между триггерами (DD2 и DD4) называется элементом И-ИЛИ.

Этот элемент составлен из двух элементов И и одного элемента ИЛИ, объединенных в одном корпусе. Сначала входные сигналы на этом элементе логически перемножаются, потом результат логически складывается.

Число входов элемента И-ИЛИ соответствует номеру разряда, т. е. если третий разряд, то три входа, четвертый – четыре и т. д. Логическая схема является двухпозиционным переключателем, управляемым прямым или инверсным выходом предыдущего триггера. При лог.

1 на прямом выходе счетчик отсчитывает импульсы с шины “+1” (если они, конечно, поступает), при лог. 1 на инверсном выходе – с шины “-1”. Элементы И (DD6.1 и DD6.2) формируют сигналы переноса.

На выходе >7 сигнал формируется при коде 111 (число 7) и наличии тактового импульса на шине +1, на выходе

Источник: https://www.cb-online.ru/spravochniky-online/online-spravochnik-konstruktora/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B0/%D1%81%D1%87%D0%B5%D1%82%D1%87%D0%B8%D0%BA%D0%B8-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%BE%D0%B2/

Счетчики импульсов: схемы, назначение, применение, устройство

СЧЕТЧИК НА МИКРОСХЕМЕ

Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1.

По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком.

Счетчики обозначают через СТ (от англ. counter).

Счетчики импульсов классифицируют

● по модулю счета: • двоично-десятичные; • двоичные; • с произвольным постоянным модулем счета; • с переменным модулем счета; • по направлению счета: • суммирующие; • вычитающие; • реверсивные; ● по способу формирования внутренних связей: • с последовательным переносом; • с параллельным переносом; • с комбинированным переносом;

• кольцевые.

Суммирующий счетчик импульсов

Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б.

Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду. В исходном состоянии на всех триггерах установлены логические нули.

Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
{xtypo_quote}В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).{/xtypo_quote}

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние.

Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7.

После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯Q1 − 1.

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0).

Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

Трехразрядный реверсивный счетчик с последовательным переносом

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111.

Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.

При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично.

В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0. В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ): ● ИЕ6 — двоично-десятичный реверсивный счетчик;

● ИЕ7 — двоичный реверсивный счетчик.

Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число. Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.

Источник: https://pue8.ru/silovaya-elektronika/913-schetchiki-impulsov-naznachenie-primenenie-ustrojstvo.html

Микросхема К561ИЕ8. Описание и схема включения

СЧЕТЧИК НА МИКРОСХЕМЕ

Довольно популярная микросхема К561ИЕ8 (зарубежный аналог CD4017) является десятичным счетчиком с дешифратором. В своей структуре микросхема имеет счетчик Джонсона (пятикаскадный) и дешифратор, позволяющий переводить код в двоичной системе в электрический сигнал появляющийся на одном из десяти выходов счетчика.

Счетчик К561ИЕ8 выпускается в 16 контактном корпусе DIP.

Технические параметры счетчика К561ИЕ8:

  • Напряжение питания: 3…15 вольт
  • Выходной ток (0): 0,6 мА
  • Выходной ток (1): 0,25 мА
  • Выходное напряжение (0): 0,01 вольт
  • Выходное напряжение (1): напряжение питания
  • Ток потребления: 20 мкА
  • Рабочая температура: -45…+85 °C

Назначения выводов К561ИЕ8 :

  • Вывод 15 (Сброс) — счетчик сбрасывается в нулевое состояние при поступлении на данный вывод сигнала лог.1. Предположим, вы хотите, чтобы счетчик считал только до третьего разряда (вывод 4), для этого вы должны соединить вывод 4 с выводом 15 (Сброс). Таким образом, при достижении счета до третьего разряда, счетчик К561ИЕ8 автоматически начнет отсчет с начала.
  • Вывод 14 (Счет) – вывод предназначен для подачи счетного тактового сигнала. Переключение выходов происходит по положительному фронту сигнала на выводе 14. Максимальная частота составляет 2 МГц.
  • Вывод 13 (Стоп) – данный вывод, в соответствии от уровня сигнала на нем, позволяет останавливать или запускать работу счетчика. Если необходимо остановить работу счетчика, то для этого необходимо на данный вывод подать лог.1. При этом даже если на вывод 14 (Счет) по-прежнему будет поступать тактовый сигнал, то на выходе счетчика переключений не будет. Для разрешения счета вывод 13 необходимо соединить с минусовым проводом питания.
  • Вывод 12 (Перенос) – данный вывод (вывод переноса) используются при создании многокаскадного счетчика из нескольких К561ИЕ8. При этом вывод 12 первого счетчика соединяют с тактовым входом 14 второго счетчика. Положительный фронт на выходе переноса (12) появляется через каждые 10 тактовых периодов на входе (14).
  • Выводы 1-7 и 9-11 (Q0…Q9) — выходы счетчика. В исходном состоянии на всех выходах находится лог.0, кроме выхода Q0 (на нем лог.1). На каждом выходе счетчика высокий уровень появляется только на период тактового сигнала с соответствующим номером.
  • Вывод 16 (Питание) – соединяется с плюсом источника питания.
  • Вывод 8 (Земля) – данный вывод соединяется с минусом источника питания.

Временная диаграмма работы счетчика К561ИЕ8

На рисунке ниже приведено условное обозначение микросхемы К561ИЕ8:

Несколько примеров применения счетчика К561ИЕ8

Бегущие огни на светодиодах

Если вы хотите построить бегущие огни на 10 светодиодах, то для этого можно использовать микросхему К561ИЕ8 совместно с таймером NE555.

Схема позволяет организовать быстрое поочередное свечение каждого светодиода. Источник тактовых импульсов построен на таймере NE555, который включен в схему как генератор прямоугольных импульсов. Частота импульсов на выходе NE555, а следовательно и скорость бегущих огней, регулируется переменным резистором R2.

Так же можно увеличить число светодиодов путем каскадного подключения счетчиков. Такую работу К561ИЕ8  вы можете посмотреть в программе Proteus.

3 счетчика К561ИЕ8 каскадом (Proteus) (13,5 Kb, скачано: 2 390)

Таймер на К561ИЕ8

С помощью десятичного счетчика К561ИЕ8 можно собрать простой таймер. При нажатии кнопки SА1 происходит разряд конденсатора С1 через резистор R1.

Когда кнопка SА1 отпущена, конденсатор C1 будет заряжаться через резистор R2, вызывая нарастающий фронт на тактовом входе (14) счетчика К561ИЕ8.

Это приведет к тому, что на выходе Q1 появляется высокий логический уровень (практически напряжение питания), в результате чего будет светиться светодиод HL1.

В то же время конденсатор С2 начнет заряжаться через сопротивления R4 и R5. Когда напряжение на нем достигнет примерно половины напряжения питания, это приведет к сбросу счетчика.

Выход Q1 перейдет в низкий уровень, светодиод погаснет и конденсатор С2 будет разряжаться через диод VD1 и резистор R3.

После этого схема будут оставаться в таком стабильном состоянии, пока кнопка SА1 не будет нажата снова.

Изменяя сопротивление R4 можно выбирать необходимый интервал таймера в диапазоне от 5 секунд и 7 минут. Ток потребления данной схемы в состоянии ожидания составляет несколько микроампер, в режиме работы примерно 8 мА в основном за счет свечения светодиода.

Полицейский проблесковый маячок

Эта схема имитирует огни полицейского проблескового маячка. В результате работы устройства, чередуется мигание красных и синих светодиодов, причем каждый цвет мигает по три раза.

Генератор тактовых импульсов для счетчика К561ИЕ8 построен на таймере NE555. Ширина этих импульсов может быть изменена путем подбора сопротивлений R1, R2 и емкости C2. Импульсы с выхода счетчика, через диоды, поступают на два транзисторных ключа, которые управляют миганием светодиодов.

Источник: http://www.joyta.ru/7402-mikrosxema-k561ie8-opisanie-i-sxema-vklyucheniya/

Микросхемы счётчики

СЧЕТЧИК НА МИКРОСХЕМЕ

Всем доброго времени суток! Сегодня буду рассказывать про счётчики, но не электрические или газовые, а про цифровые микросхемы счётчики. Счётчики являются, как и регистры, производными от триггеров, но в отличие от микросхем регистров, в микросхемах счётчиках связи между триггерами значительно сложнее и в результате функционал их больше, чем регистров.

Из самого названия данного типа цифровых микросхем понятно, что они занимаются подсчётом импульсов пришедших на их входы. То есть каждый пришедший импульс на вход счётчика увеличивает или уменьшает двоичный код на его выходах.

Счётчики могут работать в различных режимах, которые определяется связями внутренних триггеров. Режим, в котором идёт увеличение выходного кода, называют режимом прямого счёта, а если идёт уменьшение выходного кода, то это режим обратного или инверсного счёта.

Счётчики предназначены также для преобразования из двоичной системы счисления в десятичную систему, но существуют и другие типы счётчиков, например счётчики-делители, у которых на выходе частота импульсов в некоторое количество раз меньше частоты входных импульсов.

Для микросхем счётчиков в стандартных сериях существует специальный суффикс ИЕ, например К555ИЕ19, К155ИЕ2.

Все типы счётчиков можно разделить на три основные группы, которые различаются быстродействием:

  • асинхронные (или последовательные) счётчики;
  • синхронные счётчики с асинхронным переносом (или параллельные счётчики с последовательным переносом);
  • синхронные (или параллельные) счётчики.

Асинхронные счётчики

Данные типы счётчиков состоят из цепочёк JK-триггеров, которые работают в счётном режиме, когда выход предыдущего триггера служит входом для следующего.

В такой схеме триггеры включаются последовательно, а, следовательно, и выходы счётчика также переключаются последовательно, один за другим (отсюда второе название асинхронных счётчиков – последовательные счётчики).

Так как переключение разрядов происходит с некоторой задержкой, поэтому и сигналы на выходах счётчика появляются не одновременно с входным сигналом и между собой, то есть асинхронно.

Микросхемы асинхронных счётчиков применяются не очень часто, в качестве примера можно привести микросхемы типа ИЕ2 (четырёхразрядный двоично-десятичный счётчик), ИЕ5 (четырёх разрядный двоичный счётчик) и ИЕ19 (сдвоенный четырёхразрядный счётчик).

Асинхронные счётчики: слева направо ИЕ2, ИЕ5, ИЕ19.

Данные типы счётчиков имеют входы сброса в нуль (вход R), вход установки в 9 (вход S у ИЕ2), счётный или тактовый вход (вход С) и выходы, которые могут обозначаться как номера разрядов (0, 1, 2, 4) или как вес каждого разряда (1, 2, 4, 8).

Микросхема К555ИЕ2 относится к двоично-десятичным счётчикам, то есть счёт у неё идет от 1 до 9, а потом выводы обнуляются и счёт идёт сначала. Внутренне данный счётчик состоит из четырёх триггеров, которые разделены на две группы: один триггер (вход С1, выход 1) и три триггера (вход С2, выходы 2, 4, 8).

Такая внутренняя организация позволяет значительно расширить применение данного типа микросхемы, например данную микросхему можно использовать в качестве делителя на 2, на 5 или на 10.

Счётчик ИЕ2 имеет два входа для сброса в нуль объединенных по И, а так же два входа для установки в 9 тоже объединённых по И.

Для реализации счёта необходимо сбросить счётчик подачей на входы R высокого логического уровня, а на один из входов S сигнал низкого уровня. В таком режиме счётчик будет «обнулён» и последовательный счёт заблокирован. Чтобы восстановить функцию счета необходимо установить на входы R низкий уровень сигнала.

Для организации делителя на 2 необходимо подавать сигнал на С1, а снимать с выхода 1; делитель на 5 подавать сигнал на С2, а снимать с выхода 8; делитель на 10 выход 8 соединяют с С1, сигнал подают на С2, а снимают с выхода 1.

Микросхема К555ИЕ5 представляет собой двоичный счётчик, в отличие от ИЕ2 считает до 16 и сбрасывается в нуль. Также как и ИЕ2 состоит из двух групп триггеров со входами С1 и С2, а выходы 1 и 2,4,8. В отличии от ИЕ2 имеет только два входа сброса в нуль, а входов установки нет.

Микросхема К555ИЕ19 практически идентична двум микросхемам К555ИЕ5 и представляет собой два чётырёхразрядных двоичных счётчика, каждый счётчик имеет свой счётный вход С и вход сброса R. Если объединить выход 8 первого счётчика и вход С второго счётчика, то можно получить восьмиразрядный двоичный счётчик.

Синхронные счётчики с асинхронным переносом

Синхронные счётчики в отличие от асинхронных переключение разрядов идёт без задержки, то есть параллельно. Эта параллельность достигается за счёт более сложной внутренней связи между триггерами. Но также это привело к тому, что управлять данными счётчиками несколько сложнее, чем асинхронными.

Зато возможностей у синхронных счётчиков значительно больше. Для увеличения разрядности синхронных счётчиков в данных типах счётчиков используется специальные выходы.

От принципа формирования сигнала на этих выходах синхронные счётчики делятся на счётчики с асинхронным (последовательным) переносом и счётчики с синхронным (параллельным) переносом.

Основная суть работы синхронных счётчиков с асинхронным переносом заключается в следующем: переключение разрядов осуществляется одновременно, а сигнал переноса вырабатывается с некоторой задержкой.

Быстродействие данных счётчиков выше, чем асинхронных, но ниже чем чисто синхронных. Типичными представителями синхронных счётчиков с асинхронным переносом являются микросхемы К555ИЕ6 и К555ИЕ7.

Синхронные счётчики с асинхронным переносом: слева направо ИЕ6, ИЕ7.

Микросхемы ИЕ6 и ИЕ7 полностью одинаковы различие заключается в том, что ИЕ6 является двоично-десятичным счётчиком, а ИЕ7 – полностью двоичным.

Данные счётчики являются реверсивными, то есть могут работать как на увеличения числа, так и на уменьшение, для этого они имеют счётные входы: +1 (увеличение по положительному фронту) и -1 (уменьшение по положительному фронту). Для выхода сигнала переноса при прямом счёте используется выход CR, а при обратном счёте вывод BR.

Вход R является входом обнуления счётчика. Также есть возможность предварительной установки выходного кода параллельным переносом с входов D1, D2, D4, D8 при низком логическом уровне на входе WR.

После сброса счётчик начинает считать с нуля, либо с числа, которое установлено параллельным переносом. Двоично-десятичный счётчик считает до десяти, потом обнуляется и вырабатывает сигнал переноса на выходе CR или BR при обратном счёте. Двоичный счётчик же считает до 15 и происходит обнуление.

Синхронные счётчики с асинхронным переносом нашли более широкое применение, чем асинхронные счётчики: делители частоты, подсчёт импульсов, измерение интервалов времени, формировать последовательности импульсов и другое.

Синхронные счётчики

Данные типы счётчиков являются наиболее быстродействующими, однако это обуславливает самое сложное управление среди всех типов счётчиков.

Одной из особенностей синхронных счётчиков является то, что сигнал переноса вырабатывается тогда, когда все выходы счётчика устанавливаются в единицу (при прямом счёте) или в нуль (при обратном).

Также при включении нескольких счётчиков для увеличения разрядности, тактовые входы С объединяются, а сигнал переноса подается на вход разрешения счёта каждого последующего счётчика.

В серии микросхем входят несколько типов синхронных счётчиков, которые различаются способом счёта (двоичные или двоично-десятичные, реверсивные или нереверсивные) и управляющими сигналами (отсутствие или наличие сигнала сброса). Все счётчики данного типа имеют входы переноса и каскадирования.

Синхронные счётчики: слева направо ИЕ9(ИЕ10) и ИЕ12(ИЕ13).

Микросхемы К555ИЕ9 (ИЕ10) микросхемы различаются способом счёта ИЕ9 – двоично-десятичная, а ИЕ10 – двоичная. Данные микросхемы имеют счётный вход С, вход сброса R в нуль выходных выводов.

Имеется возможность предварительной установки при нулевом уровне напряжения на входе разрешения предварительной установи EWR, вход Е0 – разрешение переноса и вход Е1 – разрешения счёта.

Сигнал на выходе CR (сигнал переноса) вырабатывается при достижении максимального счёта и высоком уровне на входе Е0. Для работы счётчика должны быть высокие логические уровни на входах EWR, Е0 и Е1.

Микросхемы К555ИЕ12 (ИЕ13) также имеют одинаковое схемотехническое устройство и различаются способом счёта ИЕ12 – двоично-десятичный счётчик, а ИЕ13 – десятичный.

Данные типы счётчиков реверсивные и допускают как прямой счёт, установкой нулевого уровня на входе Е0, так и обратный счёт, установкой высокого логического уровня на Е0, в остальном же входные и выходные выводы идентичны ИЕ9 и ИЕ10.

Синхронные счётчики нашли самое широкое применение в цифровых устройствах, так они могут полностью заменить функционал асинхронных и синхронных с асинхронным переносом счётчиков и к тому же имеют самое высокое быстродействие среди счётчиков.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: https://www.electronicsblog.ru/cifrovaya-sxemotexnika/mikrosxemy-schyotchiki.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.